CLEAR SKIES IN OREGON

Human Health and Environmental Benefits of Clear Skies: Clear Skies would protect human health, improve air quality, and reduce deposition of sulfur dioxide (SO₂), nitrogen oxides (NOₓ), and mercury.

In 2020, annual health benefits from reductions in ozone and fine particles would total $93 billion, including 12,000 fewer premature deaths, far outweighing the $6.49 billion cost of the Clear Skies program.

Using an alternative methodology results in over 7,000 premature deaths prevented and $11 billion in benefits by 2020—still exceeding the cost of the program.

Clear Skies would provide an additional $3 billion in benefits due to improved visibility in National Parks and wilderness areas in 2020.

There are no counties in Oregon currently projected to be out of attainment with the annual fine particle or 8-hour ozone standards. Clear Skies would, however, achieve additional reductions in fine particles and ozone that would further protect human health.

Clear Skies would deliver numerous environmental benefits by 2020:

- nitrogen deposition would be reduced by up to 15% throughout the state; and
- under Clear Skies, the Western Regional Air Partnership (WRAP) agreement would be honored, and the WRAP emissions reductions are expected to take effect; this will allow future growth in the West to occur without degrading visibility.

The projected impacts are the results of extensive emissions and regional air quality modeling and benefits analyses as summarized in the Technical Addendum: Methodologies for Benefit Analysis of the Clear Skies Initiative, 2002. While the policy analyses tools EPA used are among the best available, all such national scale policy assessments are subject to a number of uncertainties, particularly when projecting air quality or environmental impacts in particular locations.

All human health and environmental benefits are calculated in comparison to existing Clean Air Act programs.

The two sets of estimates reflect alternative assumptions and analytical approaches regarding quantifying and evaluating the effects of airborne particles on public health. All estimates assume that particles are causally associated with health effects, and that all components have the same toxicity. Linear concentration-response relationships between PM and all health effects are assumed, indicating that reductions in PM have the same impact on health outcomes regardless of the absolute level of PM in a given location. The base estimate relies on estimates of the potential cumulative effect of long-term exposure to particles, while the alternative estimate presumes that PM effects are limited to those that accumulate over much shorter time periods. All such estimates are subject to a number of assumptions and uncertainties. It is of note that, based on recent preliminary findings from the Health Effects Institute, the magnitude of mortality from short-term exposure (alternative estimates) and hospital/ER admissions estimates (both estimates) may be overstated. The alternatives also use different approaches to value health effects damages. The key assumptions, uncertainties, and valuation methodologies underlying the approaches used to produce these results are detailed in the Technical Addendum noted above.
Changes in Emissions Under Clear Skies: In Oregon, Clear Skies is projected to maintain current (2000) levels of SO$_2$, NO$_x$, and mercury emissions.

- In Oregon, Clear Skies is projected to maintain emissions of SO$_2$, NO$_x$, and mercury at current (2000) levels.

Nationwide Emissions under Clear Skies in 2020

- SO$_2$ emissions from power generators are projected to be 3.9 million tons (a 65% reduction from 2000 levels)
- NO$_x$ emissions are projected to be 1.7 million tons (a 67% reduction from 2000 levels)
- Mercury emissions are projected to be 18 tons (a 63% reduction from 2000 levels)
- At full implementation, the emission reductions would be 73% for SO$_2$, 67% for NO$_x$, and 69% for mercury.

Figures 1a, 1b and 1c. Existing Clean Air Act Regulations (base case4) vs. Clear Skies in Oregon in 2010 and 2020

Table 1. Projected Emissions Rates in 2010 and 2020 in Oregon

<table>
<thead>
<tr>
<th>Year</th>
<th>SO$_2$</th>
<th>NO$_x$</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coal</td>
<td>All</td>
<td>Gas</td>
</tr>
<tr>
<td></td>
<td>lbs/MMBtu</td>
<td>lbs/MMBtu</td>
<td>lbs/MMBtu</td>
</tr>
<tr>
<td>2010</td>
<td>0.74</td>
<td>0.16</td>
<td>0.42</td>
</tr>
<tr>
<td>Clear Skies</td>
<td>0.74</td>
<td>0.15</td>
<td>0.42</td>
</tr>
<tr>
<td>2020</td>
<td>0.74</td>
<td>0.11</td>
<td>0.42</td>
</tr>
<tr>
<td>Clear Skies</td>
<td>0.74</td>
<td>0.11</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Costs: Nationwide, the projected annual costs of Clear Skies (in $1999) are $3.69 billion in 2010 and $6.49 billion in 2020.5

4 The base case includes Title IV, the NO$_x$ SIP call and State-specific caps in CT, MO and TX. It does not include mercury MACT in 2008 or any other potential future regulations to implement the current Clean Air Act.

5 EPA uses the Integrated Planning Model (IPM) to project the economic impact of Clear Skies on the power generation sector. IPM disaggregates the power generation sector into specific regions based on properties of the electric transmission system, power market fundamentals, and regional environmental regulations. These regions do not conform to State or EPA region boundaries making some compliance options, such as dispatch, and associated costs impractical to differentiate at a State or Regional level.
Changes in Projected Retail Electricity Prices Under Clear Skies: Electricity prices in Oregon would not be significantly affected by Clear Skies.

- In 1999, the average retail electricity price in Oregon was approximately 4.87 cents/kWh, which was below the average national retail price of approximately 6.66 cents/kWh.\(^6\) As shown in Figure 3, retail prices in WSCC/PNW (the North American Electric Reliability Council (NERC) region that contains Oregon) are projected to increase and remain below the national average between 2005 and 2020.\(^7\)

Figure 2. Projected Retail Electricity Prices in WSCC/PNW under Clear Skies (2005-2020)

Generation in Oregon under Clear Skies: Coal-fired power plants currently produce 7% of the electricity generated in Oregon. Both the level of coal-fired generation and the portion of the total generation that coal-fired plants contribute would remain relatively unchanged. In Oregon, coal-fired generation is projected to be approximately 6% of all generation by 2010 and 5% of all generation by 2020. By 2010, coal-fired capacity in Oregon is projected to be approximately 500 MW under Clear Skies.

Figure 3. Current and Projected Generation by Fuel Type in Oregon under Clear Skies (GWh)\(^8\)

\(^7\) State-level retail electricity prices vary considerably across the United States. Variation in prices can be caused by many factors including access to low cost fuels for generating power, State taxes, and the mix of power plants in the States.

\(^8\) Source: 1999 data from EIA at http://www.eia.doe.gov/cneaf/electricity/st_profiles/oregon/or.html (Table 5).
• EPA does not project that any facilities in Oregon would switch from coal to natural gas in response to the Clear Skies emissions caps.

• None of Oregon’s coal-fired generation is projected to come from coal units with emission control equipment in 2010 and 2020.

Coal Production in Oregon: Oregon does not have any coal reserves and does not produce coal.

Major Generation Companies in Oregon: The ten largest plants in the State -- each over 200 MW -- are a combination of hydro, petroleum, gas and coal-fired plants. The major electric utilities include: Portland General Electric Co., PacifiCorp, City of Eugene, Central Lincoln People’s Utility District and Clatskanie Peoples Utility District.

9 Emissions control equipment includes, where applicable, scrubbers, selective catalytic reduction, selective non-catalytic reduction, gas-reburn and activated carbon injection.
10 Source: 2000 Coal Industry Annual, Tables 1 and 33.