


An init ial step to address this agency problem was to elucidate specific technical challenges to the integration of 
simple population modeling approaches into OPP’s risk assessment process.  This was accomplished through 
development and demonstration of a population-level risk assessment using standard toxicity test data for the test 
organism Americamysis bahia.  Based on previous work at AED (e.g., Kuhn et al. 2001), we developed a life cycle 
model and its matrix equivalent: 
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The development o f regu latory guidelines and criteria to protect wildlife requ ires scientifically valid approaches for assessing risks to populations of these species from chemical stressors. This broad agency need is reflected in the specific prob lems faced 
by individual Program Offices.  For instance, the Office o f Water (OW) requires criteria protect ive of populat ions of aquatic species and aquatic-dependent wild life.  The Office o f So lid Waste and Emergency Response (OSWER) recognizes the need to 
establish consistency in wild life risk assessment approaches employed in remedial investigations of hazardous waste sites.  Further, the Office of Pesticides Programs (OPP) with in EPA’s Office o f Po llution Prevention and Toxic Substances (OPPTS) is
leading the way in  expanding ecolog ical risk assessments to provide probabilistic expressions of risk to fish and wild life populations. 

• Provided a detailed demonstration to program office risk assessors

• Current population models designed to address OPP needs require parameters that 
may be technically incompatible with current toxicity data standards

• Parameter uncertainty is large, both for point estimates and the variances needed for 
probabilist ic models

• Facilitated discussion of specific technical needs and inconsistencies between model 
parameters and standard toxicity data

• Models written in R and Matlab and translated to Excel for preliminary exploration by 
staff scientists

• Demonstrated data requirements and sample size issues for parameterizing models

• Illuminated the role of stochasticity and other ecological complexit ies in population 
modeling

• Provided specific population models for exploratory test runs by OPP risk assessors

• Continue to address technical issues regarding compatibility of model constraints 
with toxicity data

• Examine importance of parameter distribution assumptions and error partit ioning to 
risk assessment uncertainty

• Provide addit ional narrative guidance for model interpretation

• Test, refine, and document models for incorporation into OPP risk assessment

Long Term Goal 2 of the Safe Pesticides/Safe Products MYP is“To create the scientific foundation for probabilistic risk assessment methods to protect natural populations of birds, fish and other wildlife.”The NHEERL Wild life Research Strategy (US EPA 2005) 
conveys a conceptual model for achiev ing this goal. Consistent with that model, AED research has focused on methods and data requirements for: 

• incorporating populat ion-level endpoints into the Office of Pesticide Programs (OPP) risk assessment process;
• incorporating stochasticity (variat ion) into demographic models to produce probabilistic project ions of population responses to stressors; and 
• addressing complex population processes such as compensatory mechanisms (e.g., density dependence, adaptation) and spatial dynamics in pro ject ions of population responses to individual and mult iple stressors.  

These efforts are being integrated with NHEERL-level efforts to address sampling error issues associated with model parameters harvested from the literature and to provide gu idance on when model complexities are necessary and feasible g iven availab le data from the 
literature and the chemical registrat ion process.

Figure 2. Mean matrix showing estimated fecundities (top row) and survival probabilities.

We parameterized a stochastic version of the mean model shown in Figure 2 using Kendall’s (1998) maximum likelihood estimators of vital rate means and variances in control treatment 
data from past toxicity studies conducted at AED (Table 1).  These data, along with dose-response data on chemical toxicity provided by OPP for a specific chemical, became the basis for 
stochastic projections of risk (using parameter substitution).  The risk threshold was defined as the probability (first passage) of a 5% decline from init ial population size.  Results were 
expressed in terms of projected risk given specific chemical dose levels (Figure 3).

Grear et al. (2006) estimated stochastic population growth rates for the common loon using 
cit izen-collected annual count data. More recently, we used the stochastic-logistic model to 
test for density dependence (Figure 8), but deviated from Dennis and Taper (1994) by using 
information-theoretic inference methods.  

We are applying this stochastic modeling framework to controlled laboratory studies of mysid population dynamics in mult iple independent 
populations (see poster by Nacci et al., this session).  We are exploring information-theoretic approaches for modeling genetic and stress effects on 
these populations using linear models for each of the stochastic-logistic parameters, but the potential for inflated Type II error rates needs to be 
explicit ly addressed before this analysis can be fully developed. 

Table 2.  AIC results for random walk, diffusion, density dependent and lagged 
density dependent models of common loon annual count data. 

We are developing “spatially implicit” methods for incorporating spatial patterns and dynamics into 
risk assessment methodology.  These methods require less data than do spatial explicit or individual-
based methods, so discovering their effectiveness and data requirements is important.  Our work in 
this area currently focuses on spatial population dynamics of Peromyscus leucopus(Grear and Burns 
2007, Burns and Grearsubmitted), but we are also developing spatial models for regional population 
dynamics of the common loon.

The basic structure for our spatial matrix models is an extension of vector permutation methods 
described by Hunter and Caswell (2005), where each B-subblock is patch or region-specific 
demography and each M sub-block represents migratory linkage between the demographic blocks:

OPP needs simple “problem formulation” screening tools for predicting 
possible chemical effects on wildl ife population fitness in agricultural 
landscapes.  In a collaboration with GED and MED, AED is combining 
published data with theory-based life history assumptions to elucidate 
general patterns of demographic sensit ivity in birds of these environments.  
To facilitate this work, Grear and Elderd (submitted) describe the fitness 
estimation bias associated with common assumptions regarding 
survivorship.    

Figure 4. The difference between estimated population 
growth rates (λ) for the PLC and the full-matrix 
approaches plotted against the shape parameter (b) of 
the underlying synthetic life histories. The dashed 
vertical line corresponds to a Type-II life history. 

• Assumptions about lack of age-dependence in survival impact the direction and magnitude of growth 
rate estimat ion bias in ways that are pred ictable from the size of the shape parameter in survivorship 
curves (via Jensen’s inequality) 

• This shape parameter can somet imes be surmised from life history theory
(e.g., Type III survival strategy)

• Assumptions derived from life history theory can lead to cost savings for ecological risk assessment  

• Our work helps risk assessors to identify the consequences of cost-saving assumptions about survival 
and determine when such assumptions are defensible in  screening level analyses 

• Such knowledge allows more effic ient allocat ion of effort or recognit ion of uncertainty in cases where 
these screening level assumptions are not justifiable

• Incorporate life h istory assumptions to address informat ion gaps in screening level assessment of 
chemical impacts on bird populations and provide guidance to their interpretation

• Apply find ings to screening-level app lications through collaborat ion with WED (spatial population 
models) and MED (models of toxicity effects on nest success)

• Provide technical guidance to OPP for specific screening-level applicat ions

The importance of a specific habitat type to population fitness appears to depend on that habitat’s context within the landscape. The interconnectedness of 
habitats linked by migration has great relevance for predicting how localized impairments (e.g., pesticide applications) will impact landscape level 
population dynamics. However, empirical evidence for this expectation is elusive due to the complexit ies of estimating movement and modeling spatial 
population dynamics. Our study applies  recent developments in mark-recapture analysis and spatial matrix modeling to address this problem.  In a second 
manuscript (Burns and Grear, submitted), we test predictions of these models in a landscape level manipulative experiment.

Figure 7. Elasticities (i.e., proportional sensitivities) of landscape-level population fitness to perturbations of individual habitat-specific 
rates of survival and reproduction.  Impairment of adult survival in pine forest would be predicted to have a large effect at the 
landscape level (from Grear and Burns 2007).

The methods developed here are being generalized to predict landscape-level effects of other spatially discrete stressors (e.g., regional or local pollution 
effects).  This study demonstrates the methods, data requirements and challenges l ikely to be faced as OPP incorporates spatial realism into its decision-making.

• Extend the computational tools developed in this analysis to spatial modeling of chemical risk to the common loon
• Exploit our expertise with the white-footed mouse to encourage and facilitate disease vector ecology research on links between ecosystem   

services and human health 

Population growth rates estimated using simple diffusion models for the common loon compared favorably to independent estimates made from 
professional monitoring studies of loon productivity (see posters by Grear et al. and Kuhn et al., this session).  The stochastic-logistic model, to which 
we added a one-year t ime lag, was better than the diffusion model based on AIC (Table 2).  However, Type II error rates in AIC-based inference are 
not well understood for this kind of analysis.  Nonetheless, we argue in a new manuscript on loon population demography (in prep.) that our analysis 
should lead to more targeted studies of density-dependence in common loon population dynamics, and that such density dependence may have crit ical 
influence on estimation of risk to common loons from anthropogenic stressors.

Exponential models that lump potential density-driven dynamics into the stochastic term have the potential to overestimate extinction risk, so parsing 
out the effects of density dependence is sometimes important in ecological risk assessment.  This work demonstrates application to development of 
population models that will ult imately be used by OPP to conduct chemical risk assessment.

• Continue to develop and investigate methods for incorporating diffusion-based methods into stochastic modeling approaches for population-level risk 
assessment by OPP

• Test the predictions from these stochastic models in experimental systems
• Use experimental data described in Nacci et al. poster to examine issues associated with mult iple t ime series and error rates in parameter estimation, 

possibly through extramural collaboration.

ApproachApproach

We are using both cit izen-collected and original population count data to examine methods 
for addressing effects of stochasticity on parameter estimation and probabilist ic population 
modeling for wildlife risk assessment activit ies by OPP.

We are also studying stochasticity in demographic models, but we begin with count-based 
models (i.e., without demographic structure) because the theory is better developed for 
these simpler models.  We focus on the diffusion and stochastic-logistic models of Dennis 
et al. (1991) and Dennis and Taper (1994).  Application of diffusion-based approaches was 
recently described in Holmes (2004). 
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Figure 1. Life cycle graph and matrix model parameters for A. bahia.  The projection interval is one week.  
Stages are neonates, juveniles, sexually mature individuals, and fully reproducing adults
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Table 1. Mean vital rates used in construction of the mean matrix (and their estimated variances).  Maternity rates (m) 
are used in birth-flow computation of matrix model fecundities (F).  The first three survival rates (s) are used 
directly in the model as survival probabilities (p).  pa involves assumptions about constant survival rate to an 
assumed lifespan of 13 weeks.  Survival rates are computed using Kendall’s (1998) maximum likelihood methods.

Figure 3. Example output from stochastic mysid population model showing dose responses for a 
specific chemical and population-level risk projections at increasing concentrations.

• We used the following Weibull function to construct theoretical 
life histories ranging from Type I (low early mortality) to Type III 
(high early mortality) surviviorship strategies.  

• Next, we used full (i.e., Leslie) and partial life cycle (PLC) 
representations of these synthetic life histories.  The PLC uses a 
weighted average to collapse survival into a constant rate (i.e. Type 
II). 

• Figure 4 shows that, when the “true” survivorship is Type II
(i.e., b = 1 in the Weibull function), the simpler PLC is adequate.  
For  species where constant survival is less likely, bias is 
potentially large.

• Grear and Elderd use Jensen’s Inequality to describe the 
mathematical basis of this outcome:

Jensen’s Inequality states that the difference between the function of 
an expectation (e.g., the averaged survival curve) and the expectation 
of a function (the geometrically projected survival rates) is related to 
the concavity of the function, which in our study is captured by the 
survivorship shape parameter (b).  
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We parameterized this model using mark-recapture data from trapping grids in three southern New 
England habitat mosaics.  

Figure 5. Graphical depiction of habitat-dependent movement probabilities conditional on survival 
in two habitat mosaic landscapes.  Line thickness depicts size of the maximum likelihood 
estimate from the best mark-recapture model (based on AICc).  Estimates range from 0.04 to 
0.272 (probability of movement at the end of a six-week projection interval).  

Figure 6. Stage-specific survival rates for the four habitats in Figure 5b 
(six-week interval).
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Figure 8. Simulation 
projections of a stochastic-
logistic model (Dennis and 
Taper 1994) estimated from 
annual loon surveys in New 
Hampshire (manuscript in 
prep).  
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