

Applied Science and Adaptive Management in **Everglades** Restoration

Matt Harwell, USFWS June 27, 2011

Andy LoSchiavo, USACE Agnes McLean, NPS Steve Traxler, USFWS

Adaptive Managemen Integration Guide

The Comprehensive Everglades Restoration Plan

March 2011

Overview

- CERP Overview
- CERP Applied Science Strategy
- CERP Adaptive Management Overview
- CERP AM Integration Example
- Challenges of Implementing CERP AM
 Avoiding AM Pitfalls
 - DOI AM activities of interest

Players in Everglades Restoration (in no specific order)

Federal: **USACE FWS** NPS **USGS** NOAA **USDA EPA FKNMS NMFS** NOS

SFWMD FDEP FFWCC FDACS DCA FDOT

Others: Miccosukee Tribe Seminole Tribe

NGOs

Academia

Counties

CERP Components

Aquifer Storage & Recovery

- Surface Water Storage Reservoir
 - (STAs) Stormwater Treatment Areas

Reuse Wastewater

xxxxxx Removing Barriers to Sheetflow

Operational Changes

http://www.evergladesplan.org/pm/recover/recover.aspx

Effective Use of Science

50 Science **Effective Science Bay-Delta** 40 – Content Glen – Quality Canyon Chesapeake Everglades • **5** 30 **Effective Use** Kissimmee Skjern • Use of Science Louisiana Salisbury 20 Institutional process Rhine Effective where science is: Generated 10 – Evaluated – Applied 🗡 0

10

0

20

30

Effective Science

40

50

From: Van Cleve et al. (2006) Environ. Manage. 37:367-379

A structured process of learning & doing

CERP AM Integration Process

USACE Six Step Planning Process

Step 1: Identify Problems and Opportunities	
Step 2: Inventory and Forecast Conditions	
Step 3: Formulate Alternative Plans	
Step 4: Evaluate Alternative Plans	
Step 5: Compare Alternative Plans	
Step 6: Select Plans	
Project Life-Cycle: Design	
Project Life-Cycle: Construct	
Project Life-Cycle:	

Operation and Maintenance

Nine AM Activities For CERP

	Activity 2: Establish or Refine Restoration Goals and Objectives	
ctivity 1: Stakeholder Engagement and Collaboration	Activity 3: Identify and Prioritize Uncertainties	Ŧ
	Activity 4: Develop And Apply CEMS, Hypotheses, Performance Measures	ion and Refinemer
	Activity 5: Integrate AM Into Restoration Plan	/ 9: Implementat
	Activity 6: Monitor	Activity
ব	Activity 7: Assess	
	Activity 8: Decision- Making	

http://www.evergladesplan.org/pm/program_docs/adaptive_mgmt.aspx

Oysters – Example

Oysters – Example

Oysters – Example

Linking of science to management options

Stressor metric	Target	Management Action OPTION 1	Management Action OPTION 2	Management Action OPTION 3
Salinity	Salinity range of 10-25 ppt	Change operations to meet flows		
Recruitment	Presence Absence adults and larvae	Stock larvae	Stock adults	Operations to avoid too much or too little flow in key months
Substrate	Acres of Suitable habitat	Add oyster shell cultch	Try different substrate e.g., concrete	Dredge muck

Challenges of Implementing CERP AM

- Clarifying roles for implementation, decisionmaking, refinement
- Stakeholder engagement and collaboration with non-agency stakeholders
- Establishing clear ecosystem restoration goals and objectives (endpoints) at multiple scales
- Integrating applied science; science tools
- Science momentum: funding; targets; start/end
- Achieving institutional change that embraces AM principles

Governance Model

- Establish while developing AM strategy; Legislative mandate
- Scientists alone cannot create effective AM program

Effective Use of Science

- Directly inform management actions; secure monitoring \$
- Stakeholder Engagement
 - Develop strategies up front for different levels
- Management/Policy Buy In
 - Work at all levels, especially budget decision levels

Flexible AM designs

Different types of AM plans for different types of projects

Conducting Ecosystem Restoration one meeting at a time*

MEETINGS

NONE OF US IS AS DUMB AS ALL OF US.

*Disclaimer: The opinions expressed herein do not necessarily reflect those of DOI.

Department of Interior & AM

2007/2009

2011 Draft In Review

ADAPTIVE MANAGEMENT: The U.S. Department of the Interior Applications Guide

Adaptive Management Working Group Chair: Olivia Barton Ferriter

Lead Authors

Byron K. Williams, Eleanor D. Brown, and Carl D. Shapiro

Thematic Writing Teams

Climate Change Mary Boatman - Lead Donna Brewer Sarah Converse Greg Eckert Kristina Heister Kurt Johnson Harold Laskowski Dan Lecheft ky

Water Resources Art Coykendall - Lead Leigh Espy Todd Hopkins David Jacob Dennis Kubly Michael Mayer Energy Jim Woehr - Co-Lead Lianne Ball - Co-Lead John Craynon Jay Hestbeck Lindy Nelson Margaret Van Gilder

Interface of Natural and Human Systems

Bruce Peacock - Lead John Dennis Marietta Eaton Carmen Fells Melinda Knutson Kirsten Leong Clinton Moore

Other Contributors Ellen Bean, Bernard Bormann, Elise Irwin, Fred Johnson, Conor McGowan, James Nichols, Jonathan Steele

http://www.doi.gov/archive/initiatives/AdaptiveManagement/

Strategic Habitat Conservation & AM

Substitute Restoration for Conservation

Landscape Conservation Cooperatives are vehicle for Implementing SHC Principles

SHC Elements: Biological Planning, Conservation Design, Delivery, Monitoring, and Research. Credit: USFWS.

Landscape Conservation Cooperatives (LCCs)

Public-private partnerships applying a networked approach to conservation — holistic, collaborative, adaptive and grounded in science

http://www.doi.gov/lcc/index.cfm