

Triad Conference – June 10, 2008

Flux-Based DNAPL Site Remediation: Field Case Studies

Suresh Rao, School of Civil Engineering, Purdue University

Flux-Based Characterization at ~30 Field Sites

Federal Sites

 Hill AFB; Patrick AFB; Dover AFB; Vandenberg AFB; Ft Lewis; Ft Devin; Indian Head; Port Hueneme; Paris Island; Cape Canaveral; Charleston; SRS; NASA

Other Sites

- Manufacturing Facilities in Indiana & Illinois
- Dry Cleaner sites in Florida & Indiana
- International Sites
 - Borden CFB, Canada
 - Wales, UK
 - Australia (4 sites)

Four DNAPL Case Studies

- Three large sites, one small site
- Two source zones treated, one under consideration
- All sites had considerable archived data
- At all sites new flux measurements made, PFM deployments & Integral Pump Tests conducted
- We will examine:
 - Source & plume characterization
 - Source remediation performance assessment
 - Source & plume treatment options
 - Implications to long-term stewardship

DNAPL Site - 1

DOCUMENT ARCHIVE ⊲ EР Sn

Cross Section of Source Transect

DOCUMENT ARCHIVE EPA SI

PURDUE

DNAPL Plume Mass

- Plume mass (M_p) was estimated from integration of plume data (monitoring over 2002-2007 period)
- Most of the TriBE mass is found in the Intermediate aquifer
- Total mass of TriBE has stabilized at ~100-200 kg (additional mass in sorbed phase; R=??)
- Might be approaching "steady-state" conditions; stable plume??
- Need to consider mass of DBE, VB, Br.

Unpublished Data: Do Not Cite or Distribute

Lessons Learned: DNAPL Site 1

- Source mass: ~1.5-3 mT? (500-1,000L?)
- Contaminant mass discharge from a small area of control plane
- Archived data integrated with flux data for an improved Conceptual Site Model
- Partitioning Inter-well Tracer Tests & Integral Pump Tests recently completed
- Aggressive source remediation & plume management planned
- Post-remediation monitoring to establish effectiveness & design long-term stewardship

DNAPL Site-2

History

TCE plume created due to activities associated with the production of detonators from the Second World to the 1970s

Hydrogeology

- Multiple interconnected aquifers
- 4 quaternary aquifers and three tertiary aquifers
- v = 20 40 m/yr
- Water table ~ 10 to 15 m bgs

Plume Characterization

- Plume monitored since 1996
- •1,500 m long, 300 m wide and 16 m deep

Remediation driven by:

- Industrial redevelopment
- Flexible regulatory environment
- Cost constraints (passive vs aggressive)

Remedial activities to date

Shallow excavation in source area

Proposed Site Remediation

Chemical oxidation of source??

Permeable Reactive Barrier??

11

TCE & Groundwater Flux Profiles: PFM Deployments

Source Transect Well

• Source Strength = 3 g/day (other sites: 100 – 400 g/day)

Negative Correlation

Plume Transect Well

- Plume Strength = 6 g/day
- Positive Correlation
- No degradation

Basu et al., JCH 2008 (in review)

PURDUE

TCE Plume Dynamics

- Several small areas with conc >1500 ug/L
- Plume disconnecting from a depleted source zone
- Some shifts in plume shape
- Decrease in source mass discharge

Source Mass Estimation

Method B:

$$M_{P} = \int_{0}^{t} M_{D,0} \exp\left(-\frac{M_{D,0}}{M_{0}}t\right) dt = 2250kg$$

$$M_{D,t} = M_{D,0} \exp\left(-\frac{M_{D,0}}{M_0}t\right) = 1kg / year$$

Method A:

$$M_{2006} = M_{1996} \exp(-10k)$$

 $= (V_d A C_{t=1996}/k) \exp(-10k)$
 M_{2006} = present source mass

< 10 kg

 $M_0 = 2,260 \text{ kg}$ $M_{D,0} = 170-365 \text{ kg/yr}$ $M_{2006} \sim 10 \text{ kg}$

1.

Integration of Historic Data with Mass Flux Measurements

Proposed Remediation at Site: Chemical Oxidation of Source

Observations

- Source strength small compared to other sites (3 g/day)
- 2. Flux data indicate negatively correlated source distribution high concentrations in low flow regions
- Mass discharge at source and plume control planes of similar magnitude: plume degradation rates ~ 0
- 4. Source concentrations are decaying and will attain irrigation standards in <10 years
- 5. Source mass <10 kg, Plume mass ~ 3800 kg

Recommendations:

- 1. No source removal is necessary
- 2. Plume treatment or containment maybe required

Interpretations

- 1. Source removal is not important at this site??
- 2. Source treatment maybe inefficient due to accessibility of isolated 'hotspots'
- 3. Plume remediation or containment is vital
- 4. Source removal is not important?
- 5. Plume remediation more important than source

14

Ft Lewis, WA

NA1 Source Area

FluxTransectWells

16

Hill AFB OU2

History

Created due to disposal of chlorinated solvents from degreasing operations during 1967 to 1975

Hydrogeology

- Shallow unconfined aquifer
- K ~ 2 m/day

Plume Characterization

• DNAPL pooled in the paleochannel forming a source

900 m long, 150 m wide, and 10 m deep plume

TCF in

erpolation was based on 3 s (1999 - 2001) from EMRG

Source Remediation Activities

• 40,600 gallons DNAPL recovered

 In 1996 containment wall constructed around the source area

• In 1997, additional DNAPL discovered in a depression in the clay surface, just north of the containment wall in Panel 5.

• Study initiated to investigate effects of mass removal on mass discharge

• SEAR resulted in TCE mass depletion 1,300-2,200 kg; >70% reduction??

Effect of Source Remediation

Field studies indicate significant decrease in mass discharge from source zones after DNAPL mass removal.

PURDUE

Brooks et al. JCH In review

DNAPL Mass Depletion: Ft Lewis EGDY Thermal

				50 -	50 T Day Avg Mass Reduction Rate
Area 1		•	•	40 ·	40 Peak removal of 31.9 Kg/d 80
	TCE (Kg)	c-DCE (Kg)	TPH (Kg)	moval (Kg/	30 time=6 days temp=66.4 deg C. 60 9 are temp=
Estimated Mass Removed	2,580	410	40,170	82 20 - Wassew 10 -	20 NA1 40 ^b / _B 10 20
Area 2		-		0	
	TCE (Kg)	c-DCE (Kg)	TPH (Kg)	25	25 To Day Avg Mass Reduction Rate
Estimated Mass Removed	1,090	250	11,340	20 - (p/6	20 80
Area 3		-		s Removal (K	15 NA2 60 40 Hore to the total of total o
	TCE (Kg)	c-DCE (Kg)	TPH (Kg)	Mas 5	
Estimated Mass Removed	840	280	530	0	
Notes:		-	-		0 50 100 150 Days Since Start of Heating
Numbers provided in table are rounded.				50 -	⁵⁰ 100
NA2 configuration changed; all estimates based	on revised conf	iguration.		40 -	
Total mass removal estimates based on stoichiometric means				(þ/ð)	
Thermal treatment chieveline to maximize OVOC (TCE, eie DCE) comovel not TDU comovel				A) 30 -	30 T Day Avg Mass Reduction Rate 60 €
Thermal deathent objective to maximize C V OC	(100,06-001	5) Temoval, not 11	li ieniovai.	20 - 20 -	
				B .	INA3
USACE, 2007 Draft Report				10	
				0 -	0
					Days Since Start of Heating

Fort Lewis EGDY NA1

TCE Flux

PURDUE

N

Fort Lewis EGDY NA1

USACE, 2007 Draft Report

Ν

Lessons Learned: Ft Lewis EGDY

- Detailed site characterizations required to locate and delineate sources (cost & level of effort?)
- Initial NAPL mass estimates; later revised with additional analysis & interpretation.
- Thermal treatment of NA1, NA2, NA3
- ~2,600 kg TCE recovered during thermal treatment (~70% reduction)
- GW fluxes are large (q ~ 25 cm/day)
- Thermal treatment reduced (>95%) TCE & DCE mass discharge
- Flux distributions across NA1 source control plane show small area contributed most of mass discharge
- How would the source remediation decisions have changed if the flux distribution data were used?

23

Lesson Learned: Hill AFB OU2

- TCE Mass discharge estimates using three methods are in agreement.
- TCE mass discharge is across a fraction of the source control plane.
- Source treatment (SEAR) resulted in TCE mass depletion (1,300-2,200 kg removed; ~70% reduction) and an associated decrease (>90%) in TCE mass discharge.
- Increase in DCE mass discharge suggests increased biodegradation after SEAR.
- How does the source treatment influence plume evolution?

DNAPL Site Attributes

SITE PARAMETERS	Northwest US	Midwest US	Oz-1	Oz-2				
Site Hydrogeology								
Groundwater Flux, q (cm/day)	30	10 (6 & 40)	2.5 (1 & 13)	5 (3 & 20)				
Current Source								
Mass, m_0 (kg)	~5,000	??	<100	~2,500				
Max. Conc., C _{max} (mg/L)	~10	70	~5	~150				
Mass Discharge, M _D , (g/day)	~800	~300	~3	~100				
Depletion Rate Constant, α (yr ⁻¹), $\alpha = [qA_{cp}C_0/M_0]$	0.2	0?	0.4	~0.1				
Control Plane, A _{cp} (m ²)	70x12 = 840	10x5 = 50	25x15 = 375	30 x 10 = 300				
Current Plume								
Dimensions (m x m x m)	5,000x500x50	500x120x15	1500x40x11	250x50x15				
Mass, M_p (kg)	~10,000	~1,000	~3,800	~500				
Avg. Deg Rate Constant, k (yr ⁻¹)	~0??	~1	0	~1				
Site Management								
Source Remediation	ERH (99%+)	ChemOx?	None?	Flushing?				
Plume Remediation Recommendation	P&T	None?	None?	P&T				

REMChlor Simulations of Management Options

What Guides Remediation Choices?

1. Remedial Objectives

- Compliance boundary ("everywhere" or at specified POC?)
- Performance Metrics:
 - concentration or flux?
 - Mass depletion & residual mass
- Source and/or plume?

2. Remediation timeframe

- Short-term responses
- Long-term site stewardship

3. Site Characteristics

- Source strength and longevity
- Degradation rates in the plume

Source Remediation Options?

options	Stable $M_D(t) = \lambda(t)$	Advancing M _D (t) > λ (t)	Shrinking $M_D(t) < \lambda$ (t)				
1. No remediation	M_D (t) decreases over time (exponential?); so, if λ (t) is constant (?), eventually all plumes start shrinking– ** requires long term stewardship for at least a century						
2. Reduce source mass through some aggressive source depletion action (e.g., flushing, chem ox, thermal, etc) M _D (t) ↓	Plume "pinched off" at the head; tail starts shrinking when reduced M _D reaches it	Plume "pinched off" at the head but tail continues to move forward – split plumes?	Plume shrinks inwards from both ends				
3. Reduced Source Flux as in the case of n-ZVI or enhanced bio	Plume response similar to 2; but, since the source mass hasn't been reduced, the source treatment has to be maintained for a very long time						
4.Integrated "Treatment Train" Approach: (2) + (3) \rightarrow Implement "aggressive" short- term action to deplete most of the source mass (say, ~80%?), and then use the "passive" source treatment (nZVI or eZVI) to sustain essentially zero source flux, or a low-grade "chaser" of say chem ox							

PURDUE UNIVERSITY

JS EPA ARCHIVE DOCUMENT

Summary Comments

- Groundwater & contaminant flux characterization at DNAPL source control planes provides critical information needed in source remedy selection and performance assessment.
- "Source Strength" can be used to compare sites, and the required source strength reduction through mass depletion can be determined based on likely plume response.
- Regulatory framework and policy guidance lacking for adoption.

Discussion Items

- How much longer will we debate the benefits/limitations of partial mass removal for DNAPL source zones?
- If "MCL everywhere" can't really be achieved "at reasonable cost and in reasonable time," what are the alternatives for site remediation?
- If some DNAPL mass is left behind in the source zone, what are the implications to site stewardship (costs, risks, liabilities, etc)?
- How do short-term *dis*counting procedures influence site remediation decisions at government & corporate sites?

Questions?

