

Flux-Based DNAPL Site Assessment & Remediation: Overview of Concepts

Suresh Rao, School of Civil Engineering, Purdue University

Without Whom this Wouldn't be Possible!

- Nandita Basu & Irene Poyer, Purdue University
- Michael Annable, Kirk Hatfield & James Jawitz University of Florida
- Lynn Wood & Michael Brooks, US EPA-Ada
- Ronald Falta, Clemson University
- J. Christ, US Air Force Academy
- Linda Abriola, Tufts University
- Charles Werth, University of Illinois-Urbana/Champaign
- Greg Davis, Colin Johnston & Brad Patterson, CSIRO-Perth
- Ravi Naidu, Megh Mallavarupu & Subhas Nandy CRC-CARE & University of South Australia

DNAPL Site Investigations

A Decade⁺ of Progress

Hill AFB 1994-1996; Dover AFB 1997-1999

Rao et al. (WRR, 1997); Jawitz et al. (EST, 1998); McCray and Brusseau (EST, 1998); Falta et al. (WRR, 1999); Brooks et al. (JCH, 2004); Childs et al. (JCH, 2006)

Sages (FL) 1998; Bachman Road (MI) 2000

Jawitz et al. (EST, 2000); Mravik et al. (EST, 2003); Ramsburg et al. (EST, 2005)

Partial source removal debate: Theory

Sale and McWhorter (WRR, 2001); Rao and Jawitz (WRR, 2003); Parker and Park (WRR, 2004); Jawitz et al. (WRR, 2005)

Partial source removal and flux: Lab and field data

Fure et al. (JCH, 2006); Basu et al. (WRR, 2008 in press); Basu et al. (JCH, 2008 in press); Kaye et al. (JCH, 2008 in press); Chen and Jawitz (EST, in review 2007); Brooks et al. (In review, JCH, 2007)

Frequently Asked Questions

- How much data needed before remediation?
- What types of data best serve CSM & design?
- Are high costs justified in terms of reduced uncertainty?
- What are the short-term benefits of source clean up?
- What is the likely plume response to source clean up?
- How to select target (interim) endpoints?
- How to determine long-term stewardship needs?
- Is there a simplified modeling & decision framework?
- How does all this fit into the TRIAD framework?

DNAPL Site Monitoring: Enhancing Archived Site Data

Contaminant Fluxes & Mass Discharge at Control Planes

$$M_d = \Sigma J_i A_i$$

 $J_{i} = \text{Local mass flux } (ML^{2}T^{-1})$ $q_{i} = \text{Local Darcy flux (LT^{-1})}$ $C_{i} = \text{Local conc. } (ML^{-3})$ $A_{i} = \text{Area of element } i (L^{2})$ $M_{d} = \text{Source strength } (MT^{-1})$ $K_{s} = \text{Satd. Hyd. Cond (LT^{-1})}$ j = Hydraulic gradient (-)

Control plane area should be just large enough to completely inscribe the dissolved plume width

Cleanup to the Extent Necessary (CUTEN or Q10)

Source Strength
 Source Longevity
 Degradation Rate
 Receptor Loading

Key measures for: Site characterization Remediation design & Performance Assessment

Contaminant Mass Discharge Estimates

Site	<u>Contaminant</u>	$(M_D; g/day)$
Simpson County, NC*	MTBE	<1-2
Vandenberg AFB, CA*	MTBE	~1-7
Port Hueneme, CA*	MTBE	150
Elizabeth City, NJ*	MTBE	4
Testfeld Sud, Germany*	BTEX	~2
	PAHs	~30
Landfill Site, Germany*	TCE	~3
Alameda Naval Station, CA*	cis-1,2-DCE	31
Nekkar Valley, Germany*	PCE	77
Dover AFB, DE*	total chlorinated	280
St. Joseph, MI*	total ethenes	425
Hill AFB, UT	TCE	104
Manufacturing Plant, US	TCE	365
Ft Lewis, US	total ethenes	~850
Site-1, Australia	total ethenes	104
Site-2, Australia	TCE	<10

* adapted from: Einarson & Mackay (2001); ES&T, 35(3):67A-73A

8

Characterization of DNAPL Sources

What We Need

Source Longevity (Source Strength Function)

- present source mass
- source depletion behavior

Source & Flux Distribution (Source Architecture)

- identification of hotspots, targeted treatment

What We Have

Temporal Data

Concentration in select source zone monitoring wells over time

Spatial Data

- 1. Mass discharge at the source control plane at a point in time
- 2. Plume Mass

Source Depletion

$$C_{\rm s}(t) = \frac{C_0}{M_0^{\Gamma}} \left\{ \frac{(\Gamma - 1)V_{\rm d}AC_0}{M_0^{\Gamma}} t + M_0^{1 - \Gamma} \right\}^{\frac{\Gamma}{1 - \Gamma}}$$

Falta et al. 2005a

where,

 $C_s(t)$ and $C_0 =$

flux-avg. conc. at source CP at time = t; and t=0

- M_0 = initial source mass
- $V_d = Darcy flux$
- A = Source CP Area
- Γ = empirical constant

EPA ARCHIVE DOCUMENT SN

10

Source Mass Estimation

Fit monitoring well data to standard functions to estimate a value of Γ

Method A: Requires only MW data

- Monitoring well data over time fitted with an exponential to estimate k.
- 2. Now,

$$M_{t=a} = V_d A C_{t=a} / k$$

- 3. Here, a = time from which sampling data available
- 4. Thus:

$$M_{t=now} = M_{t=a} \exp\left(-kt_d\right)$$

Method B: Requires mass discharge (M_D) and plume mass (M_P) $M_D(t) = M_{D,0} \exp\left(-\frac{M_{D,0}}{M_0}t\right)$ $M_P(t) = \int_0^t M_{D,0} \exp\left(-\frac{M_{D,0}}{M_0}t\right) dt$

Two equations and two unknowns – solve for $M_{D.0}$ and M_0

Estimate present source mass using

$$M_{t=now} = M_0 \exp\left(-\frac{M_{D,0}}{M_0}t\right)$$

Source Mass & Source Strength

Source Mass Reduction

Exponent Γ is a function of DNAPL source architecture, hydrogeologic heterogeneity & correlation between the two.

Source Zone Architecture

Eulerian Approach

- Ganglia to Pool mass ratio (GTP) (Christ el al., EHP 2005)
 - Ganglia: regions of residual NAPL saturation
 Pool: regions of DNAPL saturation higher than maximum residual DNAPL saturation

Source Zone Architecture

Lagrangian Approach

Reactive Travel Times

- Source zone conceptualized as a network of stream tubes, each characterized by velocity (travel time) and NAPL saturation.
- •The domain described by mean and variance of travel time and NAPL saturation distribution, measured by non-reactive and reactive tracers, respectively.
- •The measured parameters are used to predict change in the mean contaminant flux in time over the source control plane

Source Depletion Dynamics:

Surfactant Flushing in 2-D Flow Chambers

DOCUMENT

ARCHIVE

EPA

5

Suchomel & Pennell, ES&T, 2006

$C_{f}(T) = f$ (HS, DS) $C_{f}(T) = Flux-avg.$ Concentration at Source Control Plane HS = Hydrodynamic Structure DS = DNAPL Structure					
Streamtube Model (Jawitz et al. 2005)	$\frac{C_f(T)}{f_c C_s} = \frac{1}{2} - \frac{1}{2} \operatorname{erf}\left[\frac{\ln T - \mu_{\ln \tau}}{\sigma_{\ln \tau}\sqrt{2}}\right]$	μ_{lnr} = Mean of Hydrodynamic Field and DNAPL Architecture σ_{lnr} = Variability of Hydrodynamic Field and DNAPL Architecture			
Power Law Model (Zhu and Sykes 2005)	$\frac{C_f(T)}{f_c C_s} = \left[\frac{M(T)}{M_o}\right]^{\beta}$	M_0 – Initial Mass of NAPL β - Variability Index			
Damkohler Model (Parker and Park 2005)	$\frac{C_f(T)}{C_s} = 1 - \exp\left[-\left(\frac{\kappa_o L}{\overline{K}_s}\right)\left(\frac{M(T)}{M_o}\right)^{\beta_2}\right]$	M_0 = Initial Mass of NAPL, κ_0 β_2 = Mass Depletion Exponent			

Dissolution Profile Fitted to Source Depletion Models

Conclusion

All source depletion models *fit* dissolution behavior effectively

BUT, can we estimate parameters of any of these models independently and *predict* the dissolution profile *apriori*?

- YES, the streamtube model can be parameterized using tracer tests –

Basu et al., JCH, 2008

PURDUE

Predicting Source Depletion: Simplified Models

- GTP can be measured in lab. Field methods need to be developed.
- Tracer tests for calibrating stream-tube modeling demonstrated at lab & field scales.
- Eulerian vs.
 Lagrangian
 approaches, \$\$\$!!!
- Γ=1 may be an adequate approximation??

Spatially Distributed vs. Integrated Parameters

Transition from local parameters (S_n , K, C) to integrated system behavior [$J(g/m^2/day)$; $M_D(g/day)$] J(y,z;t) =

q(y,z;t) C(z,y;t)

J = contaminant mass flux $(g/m^2/day)$ q = groundwater flux (cm/day)

C = dissolved concentration (mg/L)

 M_D (g/day)= mass discharge = $\int J dA$

Relationship between mean values:

Total DNAPL mass [m(t)] & Source Strength $[M_D(t)]$

Source Mass & Flux Distributions

- How does source mass change with time?
- How does the flux distribution change?

T2VOC Numerical Simulations

Flux Statistics at Source Control Plane

Both mean and standard deviation of contaminant flux distribution decrease with mass depletion from DNAPL source

Flux Statistics at Source Control Plane

Numerical simulations are for emplaced NAPL.

Will this be also valid for spills?

22

DNAPL Spill & Dissolution Simulations: Evolution of Source Architecture

Simulation data provided courtesy of: J A Christ (USAFCE) & L M Abriola (Tufts University)

Temporal Evolution Of Source & Flux Centroids

Source Mass

Contaminant Flux

Basu et al. JCH 2009?

Lab Data: Flux Architecture Dynamics

0.2

0

0.4

0.6

reduction in flux mean

0.8

DOCUMENT EPA ARCHIVE S

PURDUE

Implication of Results

- Flux distribution is an important metric that can be used for design of optimal remedial system that targets "hotspots"
- Flux distribution more stable over time than source distribution
- The observed stability of flux distribution is an unexpected and interesting result that warrants further investigation
- Stability of flux distribution suggests the ability to characterize flux distributions in time once initial distribution is known.

Use the CSM as a Scientific Hypothesis

The CSM is the basis of <u>all</u> site decisions about risk, remediation, closure & reuse. It integrates all available evidence & predicts when more is needed.

Preliminary CSM predicts contaminant distributions Develop new SAP to test new predictions FLUX Characterization Test predictions: Data confirms or modifies predictions

Mature CSM --the basis for decisions & subsequent activities

the CSM maturation process

TRIAD Benefits

Improved Site Decision Making:

- Integration of archived site monitoring data with new data collection for enhanced conceptual site model
- Mass discharge at source & plume control planes enables estimation of source mass, source longevity, and natural attenuation capacity
- Mass discharge serves as a metric for site prioritization, remediation performance, and helps in setting interim cleanup goals
- Groundwater & contaminant flux distribution measured at source control planes allows targeted source treatment & helps formulate cost-effective of site monitoring strategies

Questions

- How much data needed before remediation?
- What types of data best serve CSM & design?
- Are high costs justified in terms of reduced uncertainty?
- What are the short-term benefits of source clean up?
- What is the likely plume response to source clean up?
- How to select target (interim) endpoints?
- How to determine long-term stewardship needs?
- Is there a simplified modeling & decision framework?
- How does all this fit into the TRIAD framework?

Answers?

