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field data
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A Decade+ of Progress
DNAPL Site Investigations
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Can’t find it!

Can’t deplete it!

No benefit!

Back Diffusion!

Flux-based Assessment 
& Management?



Frequently Asked Questions
• How much data needed before remediation?
• What types of data best serve CSM & design?
• Are high costs justified in terms of reduced 

uncertainty?
• What are the short-term benefits of source clean 

up? 
• What is the likely plume response to source 

clean up?
• How to select target (interim) endpoints?
• How to determine long-term stewardship needs?
• Is there a simplified modeling & decision 

framework?
• How does all this fit into the TRIAD framework?



Pump & Treat Wells or
Interception Trench or

Stream etc.
E(t)

Source 
Control Plane
Md (t)

Source 
Mass
M0 and 
Mnow

Plume Mass
(Parent + Products)

Mp (t) & λ(t)

DNAPL Site Monitoring:
Enhancing Archived Site Data

Plume
Control Plane
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Contaminant Fluxes  & 
Mass Discharge at Control Planes

Md =  Σ Ji Ai

Ji = Local mass flux (ML2T-1)
qi = Local Darcy flux (LT-1)
Ci = Local conc. (ML-3)
Ai = Area of element i (L2)
Md = Source strength (MT-1)
Ks = Satd. Hyd. Cond (LT-1)
j = Hydraulic gradient (-)

Ji = qi Ci
qi =-Ks j

i

Control Plane (CP)

Δx

Δz

Ai = Δx Δz

Control plane area should be 
just large enough to completely 
inscribe the dissolved plume 
width



7

Cleanup to the Extent Necessary
(CUTEN or Q10)

Source Strength
Source Longevity
Degradation Rate 
Receptor Loading
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Control
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Key measures for:
Site characterization
Remediation design &
Performance Assessment
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Contaminant Mass Discharge Estimates



What We Have
Temporal Data

Concentration in select source zone monitoring wells over time

Spatial Data

1. Mass discharge at the source control plane at a point in time

2. Plume Mass

What We Need
Source Longevity (Source Strength Function)

- present source mass

- source depletion behavior 

Source & Flux Distribution (Source Architecture)

- identification of hotspots, targeted treatment 

Characterization of DNAPL Sources
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Source Depletion

First-Order

Linear

Constant

Newell et al., 2006, Jour. Env. Eng.
Suarez et al., 2004, Remediation.

Γ = 0

Γ=1

Γ = 0.5

where,

Cs(t) and C0 = 

flux-avg. conc. at source 
CP at time = t; and t=0

M0 = initial source mass

Vd = Darcy flux

A = Source CP Area

Γ = empirical constant

Simple Cases

0( )sC t C=

Falta et al. 2005a



Source Mass Estimation
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First-Order

Γ=1

Fit monitoring well data to standard functions to estimate a value of Γ
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∫

Two equations and two unknowns –
solve for MD,0 and M0

Estimate present source mass using

,0
0

0

exp D
t now

M
M M t

M=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

Method A: Requires only MW data

1. Monitoring well data over time 
fitted with an exponential to 
estimate k.

2. Now,

3. Here, a = time from which 
sampling data available

4. Thus:

/t a d t aM V AC k= ==

Method B: Requires mass discharge 
(MD) and plume mass (MP)

( )expt now t a dM M kt= == −



Source Mass Reduction

Dover AFB 
Florida Study

0

0.2

0.4

0.6

0.8

1

Sages 
Drycleaner

Site

Hill AFB OU-2

Dover AFB
Clemson Study

Dover AFB OU

So
ur

ce
 F

lu
x 

R
ed

uc
tio

n
0 0.2 0.4 0.6 0.8 1

Falta et al., 2005

Exponent Γ is a function of DNAPL 
source architecture, hydrogeologic 
heterogeneity &  correlation between 
the two.
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Basu et al. 2008

UTCHEM Simulations

Source Mass & Source Strength
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Source Zone Architecture
Eulerian Approach



Reactive Travel Times

•Source zone conceptualized as a 
network of stream tubes, each 
characterized by velocity (travel time) 
and NAPL saturation.

•The domain described by mean and 
variance of travel time and NAPL 
saturation distribution, measured by 
non-reactive and reactive tracers, 
respectively.

•The measured parameters are used to 
predict change in the mean 
contaminant flux in time over the 
source control plane

Source Zone Architecture
Lagrangian Approach



Source Depletion Dynamics:

Decreasing GTP

Increasing D
issolution

Suchomel & Pennell, ES&T, 2006

Surfactant Flushing in 2-D Flow Chambers



M0 = Initial Mass of NAPL, κ0

β2 = Mass Depletion Exponent
Damkohler

Model
(Parker and 
Park 2005)

M0 – Initial Mass of NAPL
β - Variability Index

Power Law 
Model

(Zhu and 
Sykes 2005)

μlnτ= Mean of Hydrodynamic 
Field and DNAPL Architecture
σlnτ= Variability of Hydrodynamic 
Field and DNAPL Architecture

Streamtube 
Model

(Jawitz et al. 
2005) 

Simplified Source Depletion Models

Basu et al., 2006, JCH

ln

ln

( ) ln1 1 erf
2 2 2

f

c s

C T T
f C

τ

τ

μ
σ

⎡ ⎤−
= − ⎢ ⎥

⎣ ⎦

( ) ( )

s o

f

c

C T M T
f C M

β
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

2( ) ( )1 exp o

s o

f

s

C T L M T
C K M

β
κ⎡ ⎤⎛ ⎞⎛ ⎞

⎢ ⎥= − −⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

Cf(T) = f (HS, DS)
Cf(T) = Flux-avg. Concentration 

at Source Control Plane
HS = Hydrodynamic Structure
DS = DNAPL Structure



Dissolution Profile Fitted to Source Depletion Models

Conclusion
All source depletion models fit
dissolution behavior effectively

BUT, can we estimate parameters of 
any of these models independently 
and predict the dissolution profile 
apriori?

- YES, the streamtube model can be 
parameterized using tracer tests –

Power Function Model
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Basu et al., JCH, 2008

Streamtube Model
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Predicting Source Depletion:
Simplified Models

GTP can be measured 
in lab. Field methods 
need to be developed.
Tracer tests for 
calibrating stream-tube 
modeling 
demonstrated at lab & 
field scales.
Eulerian vs. 
Lagrangian 
approaches, $$$!!!
Γ=1 may be an 
adequate 
approximation??

Basu et al., WRR 2008



A

Sn (x,y,z; t)

Spatially Distributed vs. 
Integrated Parameters

Transition from local parameters (Sn, K, C) to integrated system 
behavior [J(g/m2/day); MD (g/day)]

J = contaminant mass flux (g/m2/day)
q = groundwater flux (cm/day)
C = dissolved concentration (mg/L)

J (y,z;t) = 

q(y,z;t) C(z,y;t)

MD (g/day)= mass discharge = J d A∫

Relationship between mean values: 

Total DNAPL mass [m(t)] & Source Strength [MD(t)] 



Source Mass & Flux Distributions

• How does source mass change with time? 
• How does the flux distribution change?
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Flux Statistics at Source Control Plane
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Both mean and standard deviation of contaminant flux 
distribution decrease with mass depletion from DNAPL source

Basu et al. JCH, 2008
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Flux Statistics at Source Control Plane

Numerical simulations are for emplaced NAPL. 

Will this be also valid for spills?
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DNAPL Spill & Dissolution Simulations:
Evolution of Source Architecture

Simulation data provided courtesy of: 

J A Christ (USAFCE) & 

L M Abriola (Tufts University)
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Temporal Evolution Of
Source & Flux Centroids

Flux Center of Mass
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Lab Data: Flux Architecture Dynamics
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Implication of Results
•Flux distribution is an important metric that can be used for design 
of optimal remedial system that targets “hotspots”

• Flux distribution more stable over time than source distribution

•The observed stability of flux distribution is an unexpected and
interesting result that warrants further investigation

•Stability of flux distribution suggests the ability to characterize flux 
distributions in time once initial distribution is known. 

A
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FLUX Characterization
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TRIAD Benefits
Improved Site Decision Making:
• Integration of archived site monitoring data with new data 

collection for enhanced conceptual site model
• Mass discharge at source & plume control planes enables 

estimation of source mass, source longevity, and natural 
attenuation
capacity

• Mass discharge serves as a metric for site prioritization, 
remediation performance, and helps in setting interim 
cleanup goals

• Groundwater & contaminant flux distribution measured at 
source control planes allows targeted source treatment & 
helps formulate cost-effective of site monitoring strategies



Questions
• How much data needed before remediation?
• What types of data best serve CSM & design?
• Are high costs justified in terms of reduced 

uncertainty?
• What are the short-term benefits of source clean 

up? 
• What is the likely plume response to source 

clean up?
• How to select target (interim) endpoints?
• How to determine long-term stewardship needs?
• Is there a simplified modeling & decision 

framework?
• How does all this fit into the TRIAD framework?
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Answers?




