

Triad Conference – June 10, 2008

Mass Flux Field Measurement Techniques Michael C. Brooks

Mass Flux Field Measurement Techniques

Outline

- Control Planes
- Methods
 - Traditional Methods
 - Passive Flux Meter
 - Pumping Methods
- Uncertainty
- Select Field Results

Mass Flux Field Measurement Techniques

Control Planes (CPs)

•How many CPs?

- Purpose (Source or plume characterization)
- Existing monitoring network
- Budget

•CP location(s), orientation and length?

- Purpose (Source or plume characterization)
- Prior characterization (groundwater flow direction, source and plume delineation)

•Well spacing within CP(s)?

- Transect Length
- Flow and contaminant heterogeneity
- Budget
- Mass flux measurement methods

Control Planes, Cont'd

Contaminant Fluxes & Mass Discharge at Control Planes

 $M_D = \text{Mass Discharge [MT^{-1}]}$ $J_k = \text{Mass flux [ML^2T^{-1}]}$ $q_k = \text{Groundwater flux [LT^{-1}]}$ $C_k = \text{Concentration [ML^{-3}]}$ $A_k = \text{Area of element k [L^2]}$ $K = \text{Hydraulic Cond. [LT^{-1}]}$ i = Hydraulic gradient [-]

M_D, J, C, q, K, & i may be functions of both space and time

5

• FLUTeTM

6

Traditional Methods

What's different?

- Sampling location (i.e., focus on one or more control planes)
- Explicit combination of C, K, & *i* to estimate J and M_D

Traditional Methods

Where has it been used?

- Semprini et al., 1995; TCE degradation
- Borden et al., 1997; MTBE/BTEX degradation
- ITRC, 1998; Chlorinated solvent degradation
- Wilson et al., 2000; MTBE degradation
- Einarson and MacKay, 2001; MTBE and DCE source strength
- Kao and Wang, 2001; BTEX degradation
- Guilbeault et al., 2005; DNAPL source strength _
- Barbaro and Neupane, 2006; PCE degradation

Summary of Traditional Approach

- Advantages:
 - Generates spatial information on J & M_D
 - Methods exist to estimate uncertainty
 - Small waste volumes produced
 - Conventional
- Disadvantages:
 - Requires independent estimation of q
 - Contaminant measures are instantaneous
 - Interrogates small volumes of aquifer
 - Data must be spatially integrated to obtain M_D

PFM – Horizontal Cross Section

Passive Flux Meters

Example Profile from Ft. Lewis (well LC-211)

~30 Field-site deployments to date

 $J(g/m^2/d)$

q (cm/d)

10 15 20

PFM Resident Tracers

Sorbent (granular activated carbon) is saturated with multiple tracers prior to deployment

Tracer	K_d (cc/mg)	R_d
Methanol	0.0035	4.3
Ethanol	0.0165	17.6
Isopropyl alcohol	0.115	110
2,4-dimethyl-3-propanol (Internal Tracer)	>1	>1000

 $R_d = 1 + \frac{\rho}{\theta} K_d$, Water content (θ) = 0.55 and bulk density (ρ) ~ 520 mg/cc

13

Flow Lines Through PFM

 $\alpha > 1$

Convergence $(\alpha > 1)$ Divergence $(\alpha < 1)$

$$q_D = \alpha q_0$$

 q_D = Groundwater flux in well bore q_0 = Groundwater flux in formation α = Convergence factor *All three are functions of depth*

Depending on well construction: $\alpha = f(k_0, k_1, k_2, k_3, r_1, r_2, r_3)$ Klammer et al., *WRR*, 2007

Goal: Construct well so that $\alpha \sim 1$

Summary of PFMs

- Advantages:
 - Concurrent estimates of q(z) & J(z)
 - Methods exist to estimate uncertainty
 - Generates local estimates of horizontal aquifer conductivity
 - Small waste volumes are produced
 - Passive

• Disadvantages:

- Interrogates small volumes of aquifer
- Data must be spatially integrated to obtain mass discharge
- Uses resident tracers to estimate groundwater flux
- Does not function in all wells
- Proprietary method/Non-routine chemical analysis

15

Pumping Methods for Determining Mass Flux and Discharge

- Long-term pumping records
- Short-term integral pump tests (IPT)
 - -Sequential approach
 - -Concurrent variable flow rate approach
- Short-term tandem circulation well tests

Long-Term Pumping Records

(Holder et al., 1998; Einarson and MacKay, 2001; Brusseau et al., 2007)

- Robust estimate of M_D (within capture zone of the well)
- Flux estimate is less certain (requires estimate of capture zone dimension)
- No information on spatial distribution
- Requires steady-state, no (a)biotic losses

Pumping Methods, Cont'd

Integral Pump Tests, Original Concept

- J = q*C
- Sequential pumping from multiple wells
- Short-term transient test
- C obtained from analytical/numerical interpretation of CT series (assumptions about contaminant distribution required)
- q obtained from traditional means
- 55 field applications according to Bayer-Raich et al., 2004.

Interpretation of CT series

EPA ARCHIVE DOCUMENT S

Pumping Methods, Cont'd

Integral Pump Tests, Concurrent variable flow rate approach

- J = q*C
- Concurrent pumping from multiple wells
- Short-term transient test
- q obtained from pumping test hydraulic information
- To date, C taken as average of CT series

Superposition of Uniform flow and multiple Sinks

◇ Flux Well 1 □ Flux Well 2 + Flux Well 3

US EPA ARCHIVE DOCUMENT

Tandem Circulation Wells (No wastewater produced)

Analysis Approach

- A circulation pattern is established.
- Head measurements are collected and subsequently used with an analytical model to estimate K, or...
- Tracers are injected, and an inverse numerical modeling approach is used to estimate K.
- q is determined using independent estimates of i.
- J is then estimated using measured concentration data.

Summary of Pumping Methods

- Advantages:
 - Generates integrated estimate of J and M_D
 - Interrogates large volumes of aquifer
 - Can be used in deep aquifers
- Disadvantages:
 - Costly [equipment, labor, wastewater disposal (w/ exception of TCWs)]
 - May require independent estimation of q
 - May require assumptions that aquifer is homogeneous
 - Does not provide spatial information (difficult to quantify uncertainty)
 - Does not provide estimates of local maximum
 - concentrations

24

Mass Flux Measurement Uncertainty

- Measurement Uncertainty
 - (e.g., analytical precision)
- Model Uncertainty
 - (e.g., governing equations used to interpret the data)
- Interpolation Uncertainty
 - (e.g., unknown conditions between sampling points)

US EPA ARCHIVE DOCUMENT

Scale of the Measurement

Scale of device support volume relative to subsection?

Summary

- Methods are currently available that can reliably measure both mass flux and mass discharge.
- Point measurement techniques are the best option to assess spatial distribution, but uncertainly arises from the unsampled space.
- Integrated pumping tests are less likely to miss potential hot spots compared to point measurements, but are limited in their ability to estimate spatial distributions.
- Importance of collaborative data sets; q = f(t) & J = f(t)

US EPA ARCHIVE DOCUMENT

