

THE VOTE SOLAR INITIATIVE WWW.VOTESOLAR.ORG

BRINGING SOLAR INTO THE MAINSTREAM

EPA May 16, 2006

The Next 40 Minutes

- Why solar?
- Macro solutions.
- Micro solutions.

WHY SOLAR

• Environment and Public Health

- Electricity generation single largest cause of global warming
- Public health benefits—fossil fuel emissions kill
- Adds Value for all Ratepayers
 - Resource diversification
 - Transmission capacity
 - Peak demand reduction

Temperature AD 200-2000

SYR - FIGURE 2-

ITERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Indicators of the human influence on the atmosphere during the Industrial era

SYR-WG1

Predicted Changes in Climate by 2050

DOCUMENT

EPA ARCHIVE

SN

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Upsala Glacier

Argentina's Upsala Glacier was once the biggest in South America, but it is now disappearing at a rate of 200 m per year.

Peak Demand Reduction

Solar Provides Peak Demand Reduction

Source: PG&E Report "The Value of Photovoltaics in the Distribution System" 1995. This figure uses actual PG&E system-wide demand data and actual output from PG&E's 500-kW solar power plant in Kerman, CA.

DOCUMENT ARCHIVE EPA SN

Every time cumulative demand for solar doubles, the cost goes down by about 20%

DOCUMENT

ARCHIVE

EPA

SU

Sales of Integrated Circuits

YEAR	UNIT PRICE	MILITARY PERCENTAGE
1962	\$50.00	100%
1963	\$31.30	94%
1964	\$18.50	85%
1965	\$8.33	72%
1966	\$5.05	53%
1967	\$3.32	43%
1968	\$2.33	37%

Source: Denis Hayes

Japan: \$1B, 10 years = Self-Sustaining Industry

Source: PV Status Report

2005 Growth in Solar Market

- World total: 1460 MW, 34% increase
- Germany: 837 MW, 53% increase
- Japan: 292 MW, 14% increase
- US: 110 MW, 32% increase

Key Elements for Solar Success

- Financial Incentives—The Engine
 - Public Benefit Funds
 - Tax Incentives
 - RPS with solar carve-out
 - Building local demand
- Regulatory Infrastructure—The Road
 - Access to the grid (interconnection standards)
 - Net Metering
 - Rate Design

Public Benefit Fund

- Established in 19 states
- Funded by surcharge
- Funds energy efficiency and renewable energy

Tax Incentives

- 14 states have some form
- Can apply to personal or corporate
- Advantage: no need to appropriate \$
- Fed ITC—push for extension.

RPS with Solar Carve-Out

- Renewable Portfolio Standard most popular policy to incentivize renewable energy
- Regular RPS does not help solar
- 6 states and Washington DC

Interconnection Standards

- Remove arbitrariness
- Make transparent
- Allows for standardized equipment
- Lowers costs by eliminating unnecessary interconnection studies, metering requirements, standby charges, or fees

Net Metering

- Allows system owners to get credit for excess generation fed into grid
- Rationalizes relationship between grid's needs and DG's attributes
- Makes solar systems effectively 25% cheaper
- Adds value to ratepayers
 - Peak shaving
 - Lower energy costs

Rate Design

- Time-of-Use tariffs with no demand charges
 - Appropriately rewards solar for contributions during peak
 - Allows system owners to enjoy economic benefit of production

Rate Design

In 2004, 51% of solar capacity installed in the United States was in Pacific Gas & Electric (PG&E) territory, while Southern California Edison (SCE), a utility with comparable load size and number of customers, comprised only 18%. Why the difference?

Same building, three locations

Assumptions						
Installed costs	\$7.50/W					
Self-Gen Rebate	\$3.50/W					
Federal tax rate	34%					
State tax rate	9%					
Federal tax credit	10%					
State tax credit	7.5%					

Utility Rates	SC	CE (GS-2)	SDO	G&E (AL-TOU)		PG&E (A6)
Daily Service Charge DEMAND (per kW)	\$	11.00	\$	2.66	\$	0.49
Summer Back Demand Demand Summer Other Demand	\$ \$ \$	8.39 2.08 5.78	\$ \$ \$	11.58 - 4.80	\$ \$ \$	-
Winter Peak Demand Winter Part Peak Demand Winter Other Demand <u>ENERGY (per kWh)</u>	\$ \$ \$	- - 5.78	\$ \$ \$	3.83 - 4.80	\$ \$ \$	- - -
Summer Bark Frakgy Energy Summer Off-Peak Energy	\$ \$ \$	0.233 0.088 0.075	\$ \$ \$	0.108 0.081 0.081	\$ \$ \$	0.298 0.138 0.086
Winter Peak Energy Winter Part-Peak Energy Winter Off-Peak Energy	\$ \$ \$	0.095 0.095 0.075	\$ \$ \$	0.107 0.081 0.081	\$ \$ \$	0.151 0.151 0.101
Payback IRR Result can be the difference	e betwe	8.5 years 9.6% een making the	e capi	10.8 years 6.8% tal investment '	'cut'	6.6 years 13.2%

US EPA ARCHIVE DOCUMENT

Building Local Demand

- Incentivize solar locally
 - Financial Incentives
 - Requirements—New construction
 - Permitting process
 - San Diego's Expedite Program
- Municipal projects

Why Municipal Buildings?

- Large scale means cheaper installations
- Long-term, cheap capital
- High visibility
- Popular with elected officials

Key selling points

- Cost-effective/revenue positive
- Price hedge
- Smart fiscal policy
- Tangible stand for the environment

Strategies

- Bundle With Energy Efficiency
- Third Party Solar Services

GETTING TO VICTORY: A BROAD COALITION Chamber of Commerce San Francisco Labor Council American Lung Association Senior Action Network Environmental community African-American community

- Church groups
- 90% of SF elected officials

EPA ARCHIVE DOCUMENT SN

Moscone Center--675 kW

AFTER ANDBEFORENew T-5's(left)Old incandescents (right)

Project Savings

- Solar energy generated: 825,000 kWh
- EE savings: <u>4,500,000 kWh</u>
- Total energy savings: 5,425,000 kWh
- Annual utility bill savings: \$639,000*
- * 12 cents kWh average

Revenue Positive

- Total project cost: \$7.4 million
- Annual utility bill savings: \$639,000
- <u>Annual debt service*: -\$429,000</u>
 TOTAL ANNUAL SAVINGS: \$210,000
- <u>* Assumes 20 yrs at</u> 5.5%

EE Opportunity Key

- Most important part of pro-forma is determining the potential savings from energy efficiency.
- Plug that into a cash-flow model to determine how much solar can be subsidized.
- Need political will to aggregate across account.

FINANCING

- Bond
- Development Authority
- Private
- 3rd party solar services

Third Party Solar Services

- California Power Authority
- San Diego Unified School District
- Whole Foods
- Staples

How This Works

- A third party designs, installs, and owns a solar system on your roof
- You sign a 15-25 year contract to buy the metered output

Why This Works

- Model takes advantage of federal and state tax benefits not available to municipalities (non-taxpaying entities)
- Ultimate owner is someone with a tax burden to shed

Benefits

- Eliminates financing concern
- Shifts performance risk from customer to provider
- Ensures maximum production

What's Hot?

- CA-Million Solar Roofs Program
 - 10 yr, ~\$3 billion, 3,000 MW
- NJ-RPS expansion
 - -1,500 MW
- AZ-EPS expansion

 2,000 MW potential
- NM, TX, NJ, CO, PA, NV
- Federal Investment Tax Credit.

adam@votesolar.org 415/874-7434 www.votesolar.org