

Mining Site Primer

Tools for Assessment & Cleanup of Abandoned Mine Sites

Overview

- Types of environmental problems
- Objectives
- Assessments
 - Approaches
 - Tools
- Cleanup
 - Approaches
 - Considerations

<u>US EPA ARCHIVE DOCUMENT</u>

NECR Mine U Waste Rock

Personal Objectives

- Collect data that drives need for action
- Select appropriate actions with ecological restoration in mind
- Choose off-site disposal as LAST RESORT
- Collect data that maximizes effectiveness of on-site technologies

Problems

- Mines pose potential exposures to persons living working or recreating in the vicinity of contamination.
 - Primarily, we are concerned with inhalation and ingestion of soils and dust contaminated with heavy metals
 - Arsenic
 - Lead
 - Mercury
 - Radium
 - Sometimes Uranium
 - Eco & and plant toxins like zinc and cadmium
 - Some cases, acidic drainage is a problem as well (Why?)
- Mines represent loss of ecological function and opportunities for restoration.

Objectives for Mine Cleanup & Assessment

- Mitigate public health threats posed by heavy metals and/or radiologicals at abandoned mines
- Use the best science to develop protective and cost-effective solutions that are applicable at multiple sites

 Re-consider traditional cleanup goals and techniques based on estimates of material risk (bioavailability), ecological benefit, & and potential environmental costs

Assessment of contaminants in Soil

- Start with traditional assessment approaches (SW-846 or MARSSIM)
- Use the DQO process...in particular...
 - Decide what needs to be done write an *"if...then"* statement
 - Define the boundaries of the action (or actions)
 - Choose sampling approach
 - Choose statistical tests for each unit (UCLs? t-test? MARSSIM Sign test or WRS test?)
 - Determine the no. of samples by unit
 - Collect data, develop descriptive statistics, test assumptions
 - Use Visual Sampling Plan it's free
 - Get results and answer the "if...then" statement

VSP Sampling Design

The 95% UCL on the Mean

Decision Unit	Mean Ra (pCi/g)	Ra UCL 95% (pCi/g)	Comment
NECR – 1	24.39	32.45 (App. Gamma UCL)	Data follow Gamma Distribution
NECR – 2	27.95	50.29 (App. Gamma UCL)	Data follow Gamma Distribution
Ponds 1 & 2	78.26	165.37 (Adj. Gamma UCL)	Data follow Gamma Distribution
Ponds 3/3a	117.27	693.07 (99% Chebyshev (MVUE) UCL)	Data are lognormal
Sediment Pad	60.51	108.96 (App. Gamma UCL)	Data follow Gamma Distribution
Sandfill 1	9.77	15.22 (App. Gamma UCL)	Data follow Gamma Distribution
Sandfill 2	9.96	17.70 (App. Gamma UCL)	Data follow Gamma Distribution
Sandfill 3	31.00	60.60 (App. Gamma UCL)	Data follow Gamma Distribution
Ventholes 3 & 8	26.88	297.53 (Adj. Gamma UCL)	Data follow Gamma Distribution
Trailer Park	14.15	49.77 (App. Gamma UCL)	Data follow Gamma Distribution

US EPA ARCHIVE DOCUMENT

Optimize your Sampling Design

- New sub-objectives if necessary
 - Start with soil sampling. Are other media appropriate?
- Site-specific cleanup goals
 - Dependent upon speciation and bioavailability
 - Understand background concentrations
 - May choose site-specific risk assessment
 - Use PRGs as a "point of departure"

Higher or lower values may be appropriate

Assessment Tools

Collaborative sampling

- Develop correlation between a lab method (accurate) and a field (fallible) method.
- XRF for heavy metals
- Radiological scanning?
- Surrogate contaminant
- Field chemistry

Collaborative Sampling

- May improve cost-effectiveness of sampling require a large number of samples, some may be replaced with less expensive measurements
- Assumes
 - Lab-based measurements are more expensive (n)
 - Field-based measurements are less expensive (n')
 - A strong-linear relationship exists between the twotypes of measurements (constant residual variance r^2 value)
 - Mean is normally distributed

Examples of Collaborative Sampling Equipment

- X-ray fluorescence
- Direct measurements for radiation
- Mercury vapor analyzers

<u>US EPA ARCHIVE DOCUMENT</u>

From the Field to the Hotel Room

US EPA ARCHIVE DOCUMENT

Assessment Tools Continued

Specialty sampling and analysis

- Consider metal speciation (e⁻ microprobe analysis)
- Consider bioavailability (*in-vivo* literature/*in-vitro* tests (PBET))
- Consider leachability & or mobility testing (SPLP tests, Kd values)
- Consider soil health, erosion parameters (TOC, bulk density) & rainfall intensity
- Geotechnical testing (compaction, slope)
- Treatability testing

Correlation?

What is bioavailability?

- Bioavailability is the relative absorption of a chemical into the blood.
 - Risk assessment and cleanup goal determinations are typically based on animal toxicity data and epidemiological data
 - Absorption is dependent on chemical and physical form of the contaminant (e.g., species)

Bioavailability of Minerals

Arsenic or lead-containing particles (idealized particle size <1,000µm)

Arsenic minerals

Examples of varying risk related to mine minerals

Risk of exposure to 500 mg/kg arsenic in soil and 0.01 mg/m3 arsenic in air over a lifetime

		C	outdoor	Ir	idoor
Mining	Ingestion	9.70E-07	10 in 10,000,000	1.90E-06	2 in 1,000,000
community	Inhalation	2.60E-06	3 in 1,000,000	2.60E-05	3 in 100,000
	Total	3.60E-06	4 in 1,000,000	2.80E-05	3 in 100,000
C V	Ingestion	9.70E-07	10 in 10,000,000	1.20E-05	1 in 100,000
Smelter community	Inhalation	2.60E-06	3 in 1,000,000	5.70E-05	6 in 100,000
	Total	3.60E-06	4 in 1,000,000	6.90E-05	7 in 100,000
(Adapted from Murphy et al. 1989)					

JS EPA ARCHIVE DOCUMENT

Reconsidering Cleanup Goals

Bioavailability in risk assessment

- Removal objectives use Preliminary Remediation Goals (PRGs) for decision making in the "risk range" of contaminant concentrations
- PRGs may not be an appropriate measure of risk at a mine site
 - Total metals may not be bioavailable
 - Risk assessment modeling traditionally assumes 80 to 100% absorption
- Consult your toxicologist

As Bioavailability Summary

Phase Experimen		Test Material		RBA	IB	LIB	SE	
Thase	Experiment	Number	Description	NDA	LD	00	0L	
II	2	2	Bingham Creek Channel	0.39	0.26	0.53	0.08	
II	4	1	Murray Slag	0.55	0.38	0.73	0.10	
II	6	1	Midvale Slag	0.23	0.17	0.30	0.04	
II	6	2	Butte Soil 1	0.09	0.04	0.14	0.03	
II	7	1	California Gulch Phase I Residential	0.08	0.03	0.14	0.03	
II	7	2	California Gulch FeMnPbO	0.57	0.38	0.77	0.12	
II	8	1	California Gulch AV Slag	0.13	0.07	0.19	0.04	
II	9	1	Palmerton Location 2	0.49	0.34	0.66	0.10	
II	9	2	Palmerton Location 4	0.61	0.44	0.80	0.11	
II	11	1	Murray Soil	0.33	0.25	0.42	0.05	Ranges from
II	10	1	California Gulch AV Slag	0.18	0.15	0.22	0.02	itanges nom
II	10	2	NaAs (IV)	0.41	0.33	0.54	0.06	$8_{-61\%}$ in
II	15	1	Clark Fork Tailings	0.51	0.42	0.62	0.06	0-01/0 III
II	15	2	NaAs (IV)	0.47	0.38	0.59	0.06	20 studios
II	15	3	NaAs (Gavage)	0.50	0.41	0.63	0.07	SU studies
III	1	1	VBI70 TM1	0.40	0.35	0.47	0.04	
III	1	2	VBI70 TM2	0.42	0.36	0.49	0.04	
III	1	3	VBI70 TM3	0.37	0.31	0.42	0.03	
III	2	4	VBI70 TM4	0.24	0.20	0.28	0.02	
III	2	5	VBI70 TM5	0.21	0.18	0.25	0.02	
III	2	6	VBI70 TM6	0.24	0.19	0.28	0.03	
III	3	1	Butte Soil 1	0.18	0.12	0.23	0.03	
	3	2	Butte Soil 2	0.24	0.20	0.28	0.02	
	4	1	Aberjona River Sediment - High Arsenic	0.38	0.36	0.41	0.02	
	4	2	Aberjona River Sediment - Low Arsenic	0.52	0.49	0.56	0.02	
	5	1	El Paso Soil 1	0.44	0.39	0.49	0.03	
III	5	2	El Paso Soil 2	0.37	0.33	0.42	0.03	
III	6	1	Soil Affected by CCA-Treated Wood Utility Poles	0.47	0.42	0.52	0.03	
111	7	2	Dislodgeable Arsenic from Weathered CCA-Treated Wood	0.26	0.25	0.28	0.01	

Presented by B. Brattin, Summary of EPA in-vivo As studies

SUMMARY OF ARSENIC RBA VALUES USEPA Default 80-100%

Range of observed = 8% to 61%

RBA	Fraction within
(Point Estimate)	Range
<25%	10/29 = 34%
25-50%	14/29 = 48%
50%-61%	5/29 = 17%

Presented by B. Brattin, Summary of EPA in-vivo As studies

Iron King Mine Site

- Iron King Mine Site is a large mine and smelter in Humboldt, AZ
- Runoff and erosion from the mine contaminated neighboring residences with arsenic

 Arsenic is high in the region (above state and EPA guidelines for cleanup)

US EPA ARCHIVE DOCUMENT

Bioavailability in Risk Analysis

- EPA found that all residences in the study exceeded PRGs (22 ppm – Reg 9 PRG)
- EPA found that background concentrations (35 ppm) exceeded PRGs
- EPA then considered bioavailability of arsenic as a means of reconsidering what the true protective level really is
 - Based on lines of evidence EPA selected a bioavailability default of 50% (departure from 80-100% typically used)

Arsenic in Ironite?

Nothing greens like Ironite

IRONITE

Natural Minerals. Will not burn.

Guaranteed Results Neutralizes

Alkaline Soils

Develops stronger, deeper raot systems to help plants fight against mor diseases and insect infestation

A must for gardens + shrubs + citrus + trees + Rowers + lawn Cantains Natural Scluble Iron

Ironite-Arsenic Example

- Ironite is a fertilizer derived from mining wastes
- Both the mining waste and the product are currently exempt from regulation as a hazardous waste under the Beville exemption.
- Ironite contains high levels of lead and arsenic, with arsenic levels typically ranging from 2600 – 5100 ppm.
 - EPA has reported to Congress on the Ironite Product

Approach and Performance Measures

- EPA reported a best estimate of 30% and a high end estimate of 45% for the RBA of arsenic in soil for the Ironite product (based on in-vivo & in-vitro respectively).
- Based on lines of evidence EPA tweaked the risk equations to include a bioavailability factor of 50%
 - Chose a cleanup goal of 80 parts per million instead of 22 ppm.

JS EPA ARCHIVE DOCUMENT

Electron Microprobe Analysis

- EPA Region 9 conducted speciation of As using an electron microprobe
 - Determined that As was present as arsenopyrite – a low bioavailability form of As
- Analysis provided confirmation that primary species in soil samples is in fact arsenopyrite.

Arsenopyrite in Soil at Iron King

US EPA ARCHIVE DOCUMENT

Questions?

Harry Allen 2-3063
– Allen.HarryL@epa.gov