

Global Change Research Program: invasive species, biocriteria, land use change, climate-sensitive decisions

Britta Bierwagen

Global Change Research Program National Center for Environmental Assessment Office of Research & Development U.S. Environmental Protection Agency

The views expressed in this presentation do not necessarily reflect policies of the US Environmental Protection Agency

RESEARCH & DEVELOPMENT

Integrated Issue & Place-Based Research

RESEARCH & DEVELOPMENT

Four brief examples

GCRP is currently working on:

- Invasive species
- Biocriteria
- Land use change
- Water quality BMPs

Observed climate changes - temperature

Variations of the Earth's surface temperature for...

Source: IPCC 2001

RESEARCH & DEVELOPMENT

Temperature trends: 1901 to 1998

Red circles reflect warming; Blue circles reflect cooling. All stations/trends displayed regardless of statistical significance.

RESEARCH & DEVELOPMENT

Precipitation trends: 1901 to 1998

Green circles reflect increasing precipitation; Brown circles reflect decreasing precipitation. All stations/trends displayed regardless of statistical significance.

RESEARCH & DEVELOPMENT

Invasive species & climate change

Methods

Contract with Environmental Law Institute to:

- Review implications of climate change for aquatic invasive species
- Review management activities in each state
- Identify adaptive opportunities and research gaps

RESEARCH & DEVELOPMENT

Climate change and other stressors may lead to selection regime modification that favors invasions (Byers 2002):

- > Advantages of native species decline or disappear
- Success of invasive species' propagules increases
- New niches or microhabitats available

RESEARCH & DEVELOPMENT

Management under a changing climate

Climate change will create challenges for the management of invasive species:

- Prevention activities will be challenged as species move outside current ranges
 - Integrated Vector Management (J. Carlton)
 - Precautionary principle for new species

RESEARCH & DEVELOPMENT

Management under a changing climate

Climate change will create challenges for the management of invasive species:

- Monitoring networks will need to detect new species in new places
 - Regional coordination
 - Landscape-scale monitoring
 - Alteration of timing and frequency of monitoring
 - Modeling to determine when non-natives become invasive

RESEARCH & DEVELOPMENT

Management under a changing climate

Climate change will create challenges for the management of invasive species:

- Control and eradication activities will face new species and changing circumstances
 - Rapid response teams
 - Targeted research

RESEARCH & DEVELOPMENT

Invasive species infrastructure

- Management activities are based on a growing infrastructure of personnel, practices, experience, and resources
- Climate change challenges assumptions about the breadth of infrastructure
- Design, implementation, and maintenance of invasive species infrastructure requires targeted research to better understand and anticipate the effects of climate change

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

US EPA ARCHIVE DOCUMENT

Biocriteria

Climate Change & Biocriteria

- Additional stressor on ecosystem
- Affects both reference & non-reference sites
- Current indicators may be confounded by climate change effects on ecosystems
- Biocriteria Management goals
 - Difficult to establish goal if baseline is changing
 - Or goals may be impossible to meet

RESEARCH & DEVELOPMENT

Climate Change Effects on Metrics

Rivers & Streams

- Range shifts (thermal tolerance)
 - Warmwater fish range expansions
 - Coldwater fish range contractions
- Spawning (flow, temperature, turbidity)

RESEARCH & DEVELOPMENT Building a scientific foundation for sound environmental decisions

Climate Change Effects on Metrics

Coastal wetlands

- Species composition shifts (salinity tolerance)
 - Salt tolerant plant and invertebrate species expansion
- Community shifts (sea level rise)
 - Water depth changes affecting SAV

RESEARCH & DEVELOPMENT

Sensitive to Climate Change	Insensitive to Climate Change	Sensitive to Climate Change and Other Stressors
R	viver and Stream Bioc	riteria
Fish species comparison	Warmwater fish Selected inverts Periphyton – general	Coldwater fish Ratio of drought sensitive to insensitive mussel spp. Periphyton – sediment algae
	Wetland Biocriteri	а
Vegetation (freshwater, coastal) Shellfish, fish, inverts (coastal)	Timing of amphibian breeding (freshwater)	Amphibian populations, invertebrates, bird populations, mammals, fish (freshwater)

RESEARCH & DEVELOPMENT

Adaptive Management Options

- Use information on impacts to understand how metrics respond
- Monitor reference and non-reference sites for similar changes
 - Landscape-level assessments
- Adjust assessment plans based on threats

RESEARCH & DEVELOPMENT

Integrated Climate and Land Use Change Scenarios (ICLUS)

Land use scenarios

Demographic and economic conditions based on:

- 1. IPCC* scenarios: Socioeconomic conditions consistent with IPCC storylines
- 2. Decision-focused scenarios: Socioeconomic conditions specified by stakeholder groups

* Intergovernmental Panel on Climate Change

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

<u>US EPA ARCHIVE DOCUMENT</u>

Decision assessment

Evolution of decision support

Our goal is to support adaptation to climate change:

- Identify important, climate-sensitive management decisions
- Target climate-sensitive decisions likely to benefit from research and development activities
- Conduct research that helps achieve environmental management goals under changing climatic conditions

RESEARCH & DEVELOPMENT

Decision assessment

A systematic inventory and analysis of climatesensitive decisions:

- Understand the characteristics of decisions
- Identify climate-related decisions relevant to adaptation
- Prioritize decision support resources

RESEARCH & DEVELOPMENT

Decision inventory products

- Inventory of emissions sources
- Foundation for mitigation policy

Emissions Inventory

- Inventory of adaptation decisions
- Foundation for adaptation policy

RESEARCH & DEVELOPMENT

Chesapeake Bay BMPs

State tributary strategies including:

- Urban tree planting
- Erosion and sediment control
- Riparian forest buffers
- Stormwater management retention ponds
- Stormwater management wet ponds & wetlands
- Conservation tillage
- .

RESEARCH & DEVELOPMENT

Preliminary highlights

Screening of water quality BMPS:

- ~ 72% of BMPs may be sensitive to lower low flows, higher high flows, or higher temperatures
- ~ 33% of BMPs have expected performance periods over 25 years

RESEARCH & DEVELOPMENT

For more information:

Britta Bierwagen

bierwagen.britta@epa.gov

202-564-3388

RESEARCH & DEVELOPMENT