

Major Sources of Personal Exposure to Airborne Particulate Matter

Seminar at EPA Region IX March 15, 2005

Lynn Hildemann Stanford University

Airborne Particulate Matter (PM) Exists in a Wide Range of Particle Sizes . . .

US EPA ARCHIVE DOCUMENT

... and the PM Has a Complex Chemical Composition

EXAMPLE: Los Angeles Fine PM

Organics Soot Trace metals Nitrate Sulfate Ammonium Other

PM Deposition in Respiratory Tract Varies with Particle Size

From Seinfeld, John H. Air Pollution. Physical and Chemical Fundamentals, McGraw-Hill, NY, 1975

How Does Airborne PM Cause Health Impacts ? → Three Popular Hypotheses:

 Each particle depositing in lungs represents an "insult", so focus on PM < 0.05 μm

 Chemical coatings on particle surfaces are important, so focus on submicron PM (0.01-1 µm) and consider chemical composition.

 Impact depends on mass of deposited particles, so continue focusing on PM10 and/or PM2.5

(from Seinfeld & Pandis, "Atmospheric Chemistry and Physics," Wiley-Interscience, 1997)

Percentage of Time Spent Indoors, Outdoors and in Vehicles in the United States (Robinson et al., 1991)

US EPA ARCHIVE DOCUMENT

Where Does Near-Roadway PM Come From?

- Consists of ambient outdoor PM, plus
 - -Tailpipe emissions
 - -Brake wear and tire wear
 - -Resuspended road dust

Where Does Indoor PM Come From? Some infiltrates from outdoors, but can also have indoor "sources" like cooking, cleaning, dancing, etc.

Contribution of Outdoor Air vs Indoor Sources to Indoor PM

How Do Sizes of PM Near Roadways and Indoors Differ from Urban Outdoor Levels?

Near busy roadways:
-- fine PM ↑↑ (from tailpipe emissions)
-- coarser PM ↑ (from road dust resuspension)

Indoors:

-- fine PM usually \downarrow ; -- coarser PM may go \uparrow (shown) or \downarrow depending on human activities

How Does PM Composition near Busy Roadways and Indoors Differ from Urban Outdoors?

- Near busy roadways, see elevated levels of:
 - -- soot and organics (from tailpipe emissions)
 - -- trace elements like Si, Al, and Fe (from paved road dust)
- Indoors, see a larger fraction of:
 - -- organics
 - -- soil tracers like Si and Fe
 - -- other trace metals like AI and Pb
 - -- pesticides and allergens

Do Indoor Monitors Accurately Measure Personal Exposure to PM?

Indoor Personal

Outdoor

The Personal Cloud

Personal / Indoor concentration ratio > 1
Median ratios for 5 studies ranged from 1.6 to 13.4 (Rodes et al, 1991)

Re-suspension Study Set-up

3 Days with Prescribed Human Activities 2 Days with Minimal Indoor Activity

Outdoor

Indoor Personal

US EPA ARCHIVE DOCUMENT

General Methodology

- Real-time instruments for temporal and size resolution of PM
- Filter samples for mass concentrations and trace elemental compositions
- Trace gas release (SF₆) to measure air exchange rate

Personal Exposure Monitor (PEM)

PM-5 Time Series

Re-suspension Effect by Particle Size (Mean and St. Dev.)

EPA ARCHIVE DOCUMENT S

JS EPA ARCHIVE DOCUMENT

Resuspension Effect Findings

- Resuspension of PM from human activity produces a measurable personal cloud
- For PM of 2.5-10 µm, personal/indoor concentration ratios during human activity are ~1.5-2.5
- Personal/indoor ratios from human activity increase with particle size

How Much Does Resuspension of House Dust Contribute to Indoor PM?

 Model contribution of re-suspended house dust to indoor PM using 2 completely independent models:

-- infiltration model-- CMB model

First Modeling Approach: Indoor-Outdoor (I-O) Model* The indoor PM concentration due just to infiltration of outdoor air is:

$$C_{in(i)} = C_{in(i-1)} e^{-[k+l]\delta} + C_{out(i-1)} (pl/k+l)(1 - e^{-[k+l]\delta})$$
where $i = 1, 2, ..., n$

$$I = infiltration rate [h^{-1}]$$

$$k = removal rate [h^{-1}]$$

$$p = penetration fraction [-]$$

$$\delta = equally spaced time interval [h]$$
*Switzer and Ott (1992)

Indoor-Outdoor Model Results PM-5, Low-Activity Day (Day 5)

Indoor-Outdoor Model Results PM-5, Day with Activities (Day 3)

Summary of I-O PM-5 Model Results

	Indoor Conc. µg/m³	Outdoor % Contribution	Activities % Contribution			
•Prescribed Activities:						
Day 1 (5-hr)	89	4	96			
Day 2 (5-hr)	41	10	90			
Day 3 (5-hr)	48	8	92			
•Minimal Activity:						
Day 4 (23-hr)	10	37	63			
Day 5 (7-hr)	12	49	51			

<u>Second Approach</u>: Chemical Mass Balance (CMB) Receptor Model

Indoor Receptor (CMB) Model Outdoor air and personal activities are assumed to be the 2 "sources" contributing to indoor PM levels

> SOURCE Outdoor

For each elemental tracer:

Indoor Conc. = Outdoor Contribution + Contribution from Activities

Comparison of I/O and CMB Models for PM-5

	Indoor (µg/m3)	Outdoor % Based on CMB	Outdoor % Based on I/O			
Prescribed activity periods (5 hour samples):						
Day 1	89	0 ± 2	4			
Day 2	41	2 ± 5	10			
Day 3	48	4 ± 4	8			
Low-level activities (23 hour samples):						
Day 4	10	40 ± 4	37			
Day 5	12	38 ± 6	51			

US EPA ARCHIVE DOCUMENT

Re-suspension / Indoor Air Findings

- During the 5 hour periods of prescribed activities, >90% of indoor PM5 was from re-suspension of house dust (for PM2.5, was 60-90%)
- During minimal activity days, 44-63% of indoor PM5 was from re-suspension of house dust (for PM2.5, was 27-45%)

Limitations of Study

- Scripted activities
- Only one week of data
- Only one home
- No dust loading information

Conclusions

The concentration of re-suspended house dust from human activities is large enough:

- To represent ~1/2 of the total PM5 (and >1/4 of the total PM2.5) present indoors on a low-activity day, and
- To substantially increase human exposure to PM

Thank you!

Acknowledgements:

Contributors

Royal Kopperud Andrea Ferro Wayne Ott Paul Switzer Sandra McBride

Funding Sources Shah Family Fellowship Center for Indoor Air Research

Example of Personal Exposure to Coarse vs Fine PM for Different Locations

indoor activities tend to generate coarse PM.

<u>**US EPA ARCHIVE DOCUMENT**</u>

Vacuuming Study 6 vacuuming experiments

- Each experiment was performed 6-8 days after study home was last vacuumed
- Same person vacuumed each time for 30 mins, wearing comparable clothing
- Same region was vacuumed each time, using a fresh vacuum bag and the same vacuum
- Real-time PM monitors collected PM counts in 6 size ranges on a minute-by-minute basis

Summary of Vacuuming Study Results (Personal / "Background" Ratios)

Particle Size Range	Vacuum On	Vacuum Off	No Vacuum
0.3-0.5 um	1.4	1.1	1.0
0.5-1.0 um	2.1	1.6	0.9
1.0-2.5 um	5.6	2.5	1.2
2.5-5.0 um	11	9.7	2.4
5.0-10 um	18	23	5.6
> 10 um	250	210	20

Source Strengths for Human Activities (mg/min)

