

July 24, 2013

Mr. Heath Smith EPA On-Scene Coordinator U.S. Environmental Protection Agency, Region 7 310 Saline Street Fredericktown, Missouri 63645

Subject: Preliminary Removal Action Report Proposed Strecker Forest Development Site, Wildwood, Missouri U.S. EPA Region 7 START 3, Contract No. EP-S7-06-01, Task Order No. 0293.001 Task Monitors: Heath Smith, EPA On-Scene Coordinator David Williams, EPA Planning and Preparedness, North Section Chief

Dear Mr. Smith:

Tetra Tech, Inc. is submitting the attached Preliminary Removal Action Report regarding the Proposed Strecker Forest Development site in Wildwood, Missouri. If you have any questions or comments, please contact the project manager at (314) 395-3157.

Sincerely.

Tor Dave Kinroth, CIIMM START Project Manager

Ted Faile, PG, CIIMM START Program Manager

Enclosures

ec: Roy Crossland, START Project Officer (cover letter only)

PRELIMINARY REMOVAL ACTION REPORT

FOR THE

PROPOSED STRECKER FOREST DEVELOPMENT SITE WILDWOOD, MISSOURI

Superfund Technical Assessment and Response Team (START) Contract No. EP-S7-06-01, Task Order 0293.001

Prepared For:

U.S. Environmental Protection Agency Region 7 Superfund Division 11201 Renner Boulevard Lenexa, Kansas 66219

July 24, 2013

Prepared By:

Tetra Tech, Inc. 415 Oak Street Kansas City, Missouri 64106 (816) 412-1741

Section	<u>on</u>		Page
1.0	INTRO	DDUCTION	1
2.0	SITE I	LOCATION	2
3.0	SITE I	DESCRIPTION	2
4.0	SITE I	HISTORY/PREVIOUS INVESTIGATIONS	3
5.0	PREL	IMINARY REMOVAL ACTIVITIES	
	5.1 5.2	SOIL EXCAVATION AND DISPOSAL PERIMETER FENCE CONSTRUCTION AT EDA AND NPL AREA	
6.0	SUMN	/IARY	13
	6.1 6.2	REMOVAL CONSIDERATIONS PRE-REMEDIAL CONSIDERATIONS	
8.0	REFE	RENCES	15

CONTENTS

APPENDICES

<u>Appendix</u>

- A FIGURES
- B EPA REGION 7 ACTION MEMORANDUM FOR PERIMETER FENCE CONSTRUCTION
- C PHOTOGRAPHIC DOCUMENTATION
- D POST-EXCAVATION SAMPLING DOCUMENTATION AND RESULTS
- E DIOXIN TEQ CALCULATIONS (CD)
- F EXCAVATED SOIL/DEBRIS DISPOSAL RECORDS

CONTENTS (Continued)

TABLES

<u>Table</u>	Pag
1	SUMMARY OF DIOXIN TEQ CONCENTRATIONS – DU 19 (PRE-EXCAVATION)
2	SUMMARY OF DIOXIN TEQ CONCENTRATIONS >1,000 PPT – EDA AND NPL AREA9
3	DIOXIN TEO CONCENTRATIONS – SU 19D (POST-EXCAVATION)

US EPA ARCHIVE DOCUMENT

1.0 INTRODUCTION

The Tetra Tech, Inc. (Tetra Tech) Superfund Technical Assessment and Response Team (START) was tasked by the U.S. Environmental Protection Agency (EPA) Region 7 Superfund Division to provide support during preliminary removal action (RA) activities at the Proposed Strecker Forest Development site in Wildwood, Missouri (hereafter referred to as the "Strecker Forest" site). The first of these activities was a voluntary RA by the current property owner to address soil contaminated with low levels of dioxin-related compounds within a small area at the site. The contamination had been discovered during EPA investigation activities in 2011-2012. START provided (1) assistance with soil sampling and data management, (2) coordination between the property owner and the selected landfill to ensure compliance with disposal acceptance criteria, and (3) general site documentation.

The second of these preliminary RA activities was construction of a perimeter fence to restrict access to the northeast portion of the site, where soil was also contaminated with dioxin-related compounds (dioxins/furans, including 2,3,7,8-tetrachlorodibenzo-p-dioxin [2,3,7,8-TCDD] at concentrations greater than 1,000 parts per trillion [ppt] or 1 part per billion [ppb]). EPA funded this activity with regional removal program funds and tasked the EPA Region 7 Emergency and Rapid Response Services (ERRS) contractor, Environmental Restoration, LLC (ER), to complete or subcontract the fence construction. START assisted with delineation and marking of the proposed fence location, and provided oversight and site documentation during the construction activities.

The aforementioned areas of concern (AOC) had been identified during site reassessment sampling and Expanded Site Review (ESR) activities conducted by Tetra Tech START and the EPA Region 7 Superfund Division from fall 2011 through spring 2012. The Strecker Forest site is adjacent to a portion of the historical Ellisville site in Wildwood, Missouri¹. A residential development known as Strecker Forest has been proposed for the subject property. The purpose of the ESR was to determine if contaminants were present in soil and groundwater at concentrations that may present a threat to human health and the environment considering the proposed land use. The ESR was also to provide additional data to help clarify hydrogeological conditions in the area, including the direction of groundwater flow. Sampling and analysis of environmental media occurred during the ESR to assess soil and groundwater at the Strecker Forest property for presence of volatile organic compounds (VOC), semivolatile organic compounds (SVOC), polychlorinated biphenyls (PCB), metals regulated under the Resource

¹ The Ellisville site appears on the National Priorities List (NPL), which includes priority Superfund sites maintained by EPA.

US EPA ARCHIVE DOCUMENT

Conservation and Recovery Act (RCRA), and dioxins/furans. The study area for the ESR included the 18.3 acres comprising Strecker Forest: 23 proposed home sites are in the southern portion of the property, and an undeveloped "preservation area" is in the northern portion of the property. Additional details of the ESR activities and findings are presented in the referenced *Site Reassessment Report for an Expanded Site Review, Proposed Strecker Forest Development Site, Wildwood, Missouri* (Tetra Tech EM Inc. [Tetra Tech EMI] 2012).

The remainder of this report documents site background information and details of the aforementioned RA activities at the Strecker Forest site in 2012. The START project manager (PM) was Dave Kinroth, and the EPA Region 7 task monitors were On-Scene Coordinator (OSC) Heath Smith and Planning and Preparedness North Section Chief (for the Emergency Response and Removal North Branch of the Superfund Division) Dave Williams.

2.0 SITE LOCATION

Strecker Forest includes three parcels of land encompassing 18.3 acres north of Strecker Road in Wildwood, Saint Louis County, Missouri (see Appendix A, Figure 1). The three parcels include the former Dozier property at 165 Strecker Road (approximately 5 acres); the former Primm property at 173 Strecker Road (approximately 10 acres); and the former Schoessel property at 177 Strecker Road (approximately 3 acres). These three properties were purchased by W.J. Byrne Builders, Inc., of Glencoe, Missouri, with intent to develop the proposed Strecker Forest subdivision. Geographic coordinates of the site are 38.597578 degrees north latitude and 90.605617 degrees west longitude (see Appendix A, Figure 1).

3.0 SITE DESCRIPTION

Strecker Forest is mostly undeveloped, except for foundations remaining from recently demolished structures (a garage and two abandoned homes) on the former Dozier and Primm properties. The northern two-thirds of Strecker Forest is covered mostly by hardwood forest. The property is surrounded by suburban residential areas, except to the north and east, where a 12-acre tract with a residence, horse arena, and stables are present. Other features identified from previous investigations of the Strecker Forest property include a "Western Pond Area" in the southwestern portion of the site, a "Solid Waste Disposal Area" in a drainage ravine in the central portion of the site, an "Alleged Former Haul Road" that parallels the drainage ravine, and an "Eastern Disturbed Area (EDA)" and "National Priorities List (NPL)

Area" that are both in the northeastern portion of the site. The EDA and the NPL Area are adjacent to the Bliss portion of the Ellisville Superfund site, sometimes referred to as the Bliss-Ellisville site².

The terrain at the Strecker Forest property slopes downward to the north from Strecker Road. Relatively steep slopes are present that vary in elevation from approximately 720 feet at Strecker Road to approximately 635 feet along a tributary of Caulks Creek at the northeast perimeter of the site within the NPL Area (see Appendix A, Figure 2). The intermittent Caulks Creek tributary flows to the north along a ravine in the central portion of Strecker Forest, and intersects another intermittent tributary crossing the northeast corner of the Strecker Forest property. All surface water and drainage pathways on the site flow in a northerly direction toward this area.

4.0 SITE HISTORY/PREVIOUS INVESTIGATIONS

Strecker Forest is directly adjacent to the Bliss subsite of the Ellisville site; the planned preservation area includes a small (0.15-acre) portion of the Bliss subsite at the northeast corner of the 18.3-acre property (see Appendix A, Figure 2). The Callahan subsite is south of Strecker Forest across Strecker Road, and the Rosalie subsite is approximately 0.5 mile west-southwest of Strecker Forest. The following are brief summaries of each of the three subsites of the Ellisville site:

The Bliss subsite borders Strecker Forest to the north and east, and includes a small portion of the proposed preservation area at the northeast corner of the Strecker Forest property. Investigative activities beginning on September 16, 1980, identified two waste disposal areas northwest of a horse arena on the property. On June 2, 1981, trenching operations guided by evewitness accounts identified buried drums at the Bliss subsite. Several followup geophysical surveys starting in June 1982 and continuing through August 1990 identified buried waste at a number of locations at the Bliss and contiguous properties. In August 1985, the Missouri Department of Natural Resources (MDNR) placed a liner in the stream bed of the Caulks Creek tributary to stabilize the stream banks, and constructed a berm to divert overland flow from the eroding stream. EPA implemented an RA in 1996, involving excavation and management of soil impacted by dioxin³ and non-dioxin wastes, along with bulk wastes in buried drums and other materials. During the RA, dioxin-contaminated materials were transported to the Times Beach site for thermal treatment (incineration). All non-dioxin hazardous wastes were managed off site at commercial RCRA-permitted hazardous waste facilities. Non-hazardous materials were disposed of at a sanitary landfill. In all, 24,700 tons of dioxin-contaminated soil, 581 tons of soil contaminated with hazardous substances other than dioxin, and 480 buried drums and other containers of wastes were removed from the site. Soil samples were collected to confirm that cleanup goals had been achieved. Once cleanup activities had been completed, excavated areas were backfilled, re-graded, and seeded. The removal activities included a

² The overall Ellisville Superfund site includes the Bliss, Callahan, and Rosalie subsites, which are technically defined not by property boundaries but by boundaries of the areas where contamination was found.

³ The term "dioxin" refers to a family of related compounds. Risk related to dioxin-contaminated soils at the Bliss-Ellisville site was primarily driven by 2,3,7,8-TCDD, which has the highest toxicity of dioxin compounds.

0.15-acre area at the extreme northeast corner of the Strecker Forest property (referred to as the "NPL Area" of Strecker Forest during past investigations). MDNR continues to monitor groundwater and soil vapor conditions at the Bliss subsite.

The Callahan subsite is due south of Strecker Forest. In August 1980, an evewitness reported drums being buried near a barn on the Callahan property. On December 14, 1981, EPA/MDNR initiated an emergency RA to excavate the drums. The RA, which was completed on February 18, 1982, involved removal of 1,205 drums from the property. Of the 1,205 drums, 613 contained hazardous materials. EPA's Remedial Investigation Report regarding the Ellisville site-dated September 21, 1983—presented results from field investigations at the Callahan subsite. On July 10, 1985, EPA selected a remedial action for the Callahan subsite that included stabilization of soils in the former drum burial area and removal of a plastic cover, blocks, gravel, and fencing remaining from the 1981-1982 drum removal. On January 31, 2005, MDNR conducted a Site Removal Evaluation (SRE) to determine if any residual soil contamination remained at the Callahan subsite at concentrations that would warrant further response. MDNR prepared a Removal Site Evaluation Report—dated August 5, 2005—that incorporated the findings of the MDNR SRE (MDNR 2005). Additional sampling at the Callahan subsite also occurred during the site reassessment sampling and ESR investigation activities at Strecker Forest during fall 2011 through spring 2012. Elevated levels of VOCs and RCRA metals (lead in particular) were found in soil in the vicinity of the former drum burial area. EPA then conducted a followup RA at the Callahan subsite in fall 2012, removing 2,056.74 tons of additional contaminated material from the burial area, and transporting it off site for proper disposal at the Milam Landfill in East St. Louis, Illinois, The Callahan subsite was then restored in December 2012 in accordance with an agreement between EPA and the property owner (Tetra Tech 2013).

The Rosalie subsite is approximately 0.5 mile west-southwest of Strecker Forest. On July 17, 1980, contractors for the St. Louis Metropolitan Sewer District encountered buried drums at the Rosalie property while installing a new sewer line along Caulks Creek. The St. Louis Metropolitan Sewer District notified EPA, MDNR, and the U.S. Coast Guard Safety Office about the drums. In September 1980, four areas were identified where drums, pieces of drums, or trash had been found. During initial response actions, 267 drums were removed from the Rosalie subsite. On July 10, 1985, EPA selected a final remedy for the Rosalie subsite, subsequently implemented by MDNR, that involved off-site disposal of contaminated soil, drums, and debris remaining at two locations. An Environmental Site Assessment (ESA) during January 29-31, 1986, characterized conditions at all four disposal areas (ELL-01, ELL-02, ELL-03, and ELL-04). Twenty-five soil samples were collected and analyzed for SVOCs; all results were below EPA's Regional Screening Levels (RSL) for residential soil (EPA 2013).

Because of its proximity to the Ellisville Superfund subsites, the Strecker Forest property has come under scrutiny related to environmental health concerns associated with the proposed residential development of the property. The purpose of the recent EPA ESR was to build upon information from previous studies to establish a data set that would support a more comprehensive assessment of human health risks to short-term trespassers and associated with proposed residential land use at Strecker Forest. The ESR was also to characterize potential for impacts on existing properties/residents in nearby areas.

The study area for the Strecker Forest ESR included the entire 18.3-acre property proposed for development. During a prior Phase II ESA by Mundell & Associates, Inc. (Mundell 2010), six areas of interest had been identified on the Strecker Forest property:

- The former Dozier and Primm residences near the southeast property boundary
- A pond near the western property boundary in the southwestern portion of the site (Western Pond Area)
- A solid waste disposal area within a drainage ravine at the central part of the site (Solid Waste Disposal Area)
- A historical roadway (interpreted as a former haul road) along the central drainage ravine (Alleged Former Haul Road)
- An area in the northeastern portion of the site that was identified as formerly disturbed, based on historical aerial photography from 1966 (Eastern Disturbed Area or EDA)
- An area in the extreme northeast portion of the site that had been included in a 1996 cleanup at the adjoining Bliss subsite of the Ellisville NPL site (NPL Area).

The scope of the ESR included investigation of these previously designated areas, as well as several new areas including the southern portion of the property where 23 home sites have been proposed for development, and the undeveloped area designated as a "preservation area" in the northern portion of the property. The overall investigation strategy involved a combination of methods used to gather additional data and information in order to better characterize potential risks associated with conditions across the property. The scope of this investigation included:

- Geophysical investigation for buried metals
- Exploratory trenching
- Surface soil sampling using an incremental composite sampling (ICS) protocol
- Subsurface soil sampling at selected boring locations
- Interior dust sampling within existing structures
- Installation of groundwater monitoring wells
- Measurement of static water levels in new and existing monitoring wells
- Groundwater sampling at new and existing monitoring wells.

Selection of analytes for this ESR was based on results of previous investigations. All soil (surface and subsurface) and groundwater samples were analyzed for SVOCs, RCRA metals, PCBs, and/or dioxin-related compounds⁴. All subsurface soil and groundwater samples collected from the Strecker

⁴ Dioxin analysis included seventeen 2,3,7,8-substituted dioxin and furan congeners that contribute to calculation of a dioxin toxic equivalence (TEQ) value.

Forest property were also analyzed for VOCs. Interior dust (wipe) samples were analyzed for dioxins/furans only. Sampling activities for the Strecker Forest ESR occurred between September 2011 and January 2012.

Surface soil samples were collected using an ICS strategy, which involved separation of the entire site area into decision units (DU). Each DU was split into four sampling units (SU) of approximately equal size. Within each SU, a nine-aliquot composite sample was collected from 0-2 inches (in.) below ground surface (bgs), using a disposable stainless steel spoon to collect and homogenize the aliquots. Approximately equal portions of samples from each SU were transferred to a disposable aluminum pan and homogenized to create a composite "top-tier" sample representing the entire DU. Initial analyses were performed on the top-tier DU samples. The remaining portions of the composite samples from each SU were retained and archived for possible future analysis if the top-tier data would indicate presence of one or more contaminants at concentrations exceeding their respective levels of concern. If the top-tier data showed any exceedance, archived SU samples were then packaged and shipped for analysis to provide sub-DU information in support of remedial action or additional sample collection planning. All of this was done in accordance with the *User Guide – Uniform Federal Policy Quality Assurance Project Plan Template for Soils Assessment of Dioxin Sites* (EPA 2011).

Initially, 39 DUs (sometimes referred to as exposure units [EU]) had been established at Strecker Forest to characterize surface soils using an incremental soil sampling approach. Twenty-three DUs were designated to correspond to individual home site boundaries presented in the preliminary plat for property development. These home site DUs ranged from 0.22 to 0.43 acre. The portion of Strecker Forest not planned for residential home sites has been designated as a "preservation area." This preservation area was divided into nine DUs with areas ranging from 0.96 to 1.17 acres. Seven additional DUs with areas ranging from approximately 0.18 to 0.26 acre were established near the NPL Area. The purposes of the incremental surface soil sampling in the vicinity of the NPL Area were to confirm residual conditions following past cleanup activities, and to assess any subsequent impacts from the NPL Area on adjoining areas of Strecker Forest. The seven DUs established to assess conditions at and near the NPL Area conformed to the stream features and topography in the area. An additional five DUs were added at a later date, based on secondary review of sampling results. In all, 44 DUs were eventually established and sampled at Strecker Forest.

As described above, each of the 44 DUs at Strecker Forest was subdivided into four SUs. A composite sample consisting of nine aliquots was collected from 0-2 in. bgs (surface soil) within each SU using a clean, dedicated, stainless steel spoon (or equivalent); placed in a clean, disposable aluminum pan; and

6

homogenized. Portions of the samples from each SU were transferred to 8-ounce jars for storage. The remaining portions of the SU samples were combined and homogenized to represent one composite sample for the entire DU. Part of this homogenized sample was transferred to two 8-ounce jars and submitted to a Contract Laboratory Program (CLP) laboratory or to the EPA Region 7 laboratory for analysis for SVOCs, RCRA metals, and PCBs. A portion of the homogenized DU sample was also transferred to a separate jar and submitted to Cape Fear Analytical, LLC (CFA) in Wilmington, North Carolina, for analysis for dioxin toxic equivalence (TEQ) concentrations via Method 1613B. The remaining portion of the homogenized DU sample was transferred to a sealed sample container and retained for possible future analysis. Pertinent data, including analyses to be performed and sample location data, were recorded on field sheets for each sample.

Subsurface soil samples were collected at selected locations at the Strecker Forest property using a Geoprobe[®] direct-push apparatus. Geoprobe[®] sample locations were selected to address specific areas of interest and to cover the geographic extent of the site. At each borehole, a Macro-Core soil sampler fitted with a disposable polyvinyl chloride (PVC) sleeve was advanced to 12 feet bgs, groundwater, or refusal, whichever was encountered first. The soil core was retrieved and screened for VOCs with a photoionization detector (PID). Samples for laboratory analysis were collected from each borehole from 0 to 2 feet bgs and from the 2-foot interval of the soil core below 2 feet bgs that yielded the highest PID reading (all samples for analysis for VOCs were collected from depths exceeding 2 feet bgs). If none of the boring intervals indicated elevated PID readings, a sample was collected from an interval with visible staining or other indication of potential chemical contamination. If no soil intervals exhibited elevated PID levels or visible staining, a sample was collected from the deepest interval (from the bottom 2-foot interval of the boring).

Soil samples for VOC analysis were collected via EPA Method 5035. Samples for VOC analysis were placed into two 40-milliliter vials preserved with sodium bisulfate (5 grams of soil in each) and two unpreserved 40-milliliter vials (each filled with soil). Then, soil from the sample interval was removed from the PVC sleeve and placed in a disposable aluminum pie pan for homogenization prior to transfer to three 8-ounce jars for the remaining analyses (dioxin TEQ, SVOCs, RCRA metals, and PCBs). Pertinent data, including analyses to be performed and sample location data, were recorded on field sheets for each sample.

As previously mentioned, a summary of the findings and recommendations regarding all of the data generated by the recent ESR activities is presented in the referenced *Site Reassessment Report for an Expanded Site Review, Proposed Strecker Forest Development Site, Wildwood, Missouri* (Tetra Tech

EMI 2012). Two AOCs were identified during the ESR where dioxin TEQ concentrations in soil were above levels of concern (LOC). These two AOCs are as follows:

Decision Unit 19 (see Appendix A, Figure 2)

The original top-tier ICS surface soil sample collected at residential parcel number 19 (designated DU 19) had a slightly elevated dioxin TEQ level at 75.5 ppt, which was above the site-specific screening level (SSL) of 50.5 ppt for proposed residential areas of the site. The dioxin/furan congener profile in this sample did not correspond to the congener profile displayed in samples collected from the Bliss portion of the Ellisville site, which indicated that the dioxin TEQ in DU 19 likely had originated from a separate, unidentified source. Dioxin/furan compounds are known to be created during combustion processes that occur in the presence of chlorine. Uncontrolled barrel burning of trash is a primary source of dioxins/furans into the environment, and it was speculated this or some other anthropogenic source could account for the dioxin TEQ level identified at this location.

Based on the result from the top-tier ICS sample collected at DU 19, START was requested to submit the four archived samples from SUs 19A to 19D for dioxin TEQ analysis, along with another top-tier sample from DU 19. These results are listed in Table 1 below.

TABLE 1

SUMMARY OF DIOXIN TEQ CONCENTRATIONS – DU 19 (PRE-EXCAVATION) PROPOSED STRECKER FOREST DEVELOPMENT SITE – WILDWOOD, MISSOURI

Sample Number	Date Collected	Sample Description/ Location	Dioxin TEQ (ppt)
5527-90	9-20-11	DU 19 ICS (original sample)	75.5
5651-57	5-15-12	SU 19A	4.3
5651-58	5-15-12	SU 19B	3.55
5651-59	5-15-12	SU 19C	3.67
5651-60	5-15-12	SU 19D	589.4
5651-61	5-15-12	DU 19 ICS (re-sample)	294.0

Notes:

DUDecision unitICSIncremental composite samplepptParts per trillion

SUSampling unitTEQToxic equivalence

Implementing the ICS sampling methodology led to determination that the source of dioxin TEQ contamination in DU 19 was localized within the area represented by SU 19D. The property owner, Wes Byrne of W.J. Byrne Builders, Inc., thus decided to conduct voluntary removal of the dioxin-

contaminated soil from SU 19D. START was requested to provide (1) assistance with post-excavation soil sampling and data management, (2) coordination between the property owner and the selected landfill to ensure compliance with disposal acceptance criteria, and (3) general site documentation. These activities are summarized in Section 5.1 of this report.

EDA and NPL Area (see Appendix A, Figures 2 and 3)

Elevated dioxin TEQ levels were detected in surface and subsurface soil samples collected during the ESR investigation within the EDA and NPL Area in the northeastern portion of Strecker Forest (near the boundary with the Bliss portion of the Ellisville site, and adjacent to the area of the previous dioxin RA at the Bliss subsite in 1996-1997). The previous RA had included excavation of soils with dioxin exceeding 1,000 ppt (equivalent to 1 ppb). Residual dioxin levels in soil less than 1,000 ppt had been allowed to remain in place. Some ESR investigation samples were found to exceed an SSL of 820 ppt for dioxin TEQs established for non-residential soil. These elevated dioxin TEQ levels were limited to an area of approximately 0.5 acre within portions of the previously designated EDA and NPL Area. Implementing the ICS sampling methodology led to discovery that within the following SUs, dioxin TEQ concentrations exceeded 1,000 ppt: 34D, 35A, 36A, 41A, 42A, 42D, and 43D. Three subsurface borehole samples near these areas (SB-14, SB-37, and SB-20) also contained elevated dioxin TEQ concentrations. Results from these samples are listed in Table 2 below.

TABLE 2

SUMMARY OF DIOXIN TEQ CONCENTRATIONS >1,000 PPT – EDA AND NPL AREA PROPOSED STRECKER FOREST DEVELOPMENT SITE – WILDWOOD, MISSOURI

Sample Number	Date Collected	Sample Description/ Location	Dioxin TEQ (ppt)
5651-23	1-24-12	SU 34D (surface)	5,770
5618-18	12-1-11	SU 35A (surface)	3,960
5618-22	12-1-11	SU 36A (surface)	4,010
5651-28	1-23-12	SU 41A (surface)	2,680
5651-32	1-23-12	SU 42A (surface)	1,130
5651-35	1-23-12	SU 42D (surface)	1,120
5651-39	1-24-12	SU 43D (surface)	2,300
5527-42	9-14-11	SB-14 (0-2 feet bgs)	18,234
5651-46	1-23-12	SB-37 (1-2 feet bgs)	26,684
5527-57	9-14-11	SB-20 (0-2 feet bgs)	1,733

Notes:

bgs	Below ground surface
EDA	Eastern Disturbed Area
NPL	National Priorities List
ppt	Parts per trillion

SB Soil boring

SU Sampling unit

TEQ Toxic equivalence

The ESR final report recommended further assessment at the Strecker Forest property to focus on conditions in the northeast portion of the property and evaluate potential risks via exposure pathways based on current and potential future land use.

EPA Region 7 decided site conditions could pose a threat to public health and welfare, given that levels of dioxin-related compounds (specifically 2,3,7,8-TCDD) had been found above the previously established removal action level (RAL) of 1 ppb for dioxin TEQ, and exceeding the current SSL of 820 ppt at non-residential, undeveloped areas of the site. It was determined that the site qualified for RA consideration, based on the following National Contingency Plan (NCP) criteria in 40 *Code of Federal Regulations* (CFR) 300.415(b):

40 CFR 300.415 (b)(2)(iv) – High levels of hazardous substances or pollutants or contaminants in soils largely at or near the surface that may migrate.

It was decided to isolate the portion of the northeast area of the site where elevated dioxin concentrations had been found in an effort to keep this area undisturbed by human activity (i.e., planned residential development activities), pending final decisions regarding disposition of the contaminated soils. An Action Memorandum approved in September 2012 (see Appendix B) prescribed construction of a perimeter fence to encircle all or most of this contaminated area. START was requested to assist with this by delineating and marking the proposed fence-line perimeter prior to construction of the fence, and overseeing and documenting construction of the fence. These START activities are summarized in Section 5.2 of this report.

5.0 PRELIMINARY REMOVAL ACTIVITIES

The following sections of this report document details of the preliminary RA activities in 2012 within the two aforementioned AOCs at the Strecker Forest site.

5.1 SOIL EXCAVATION AND DISPOSAL

On the morning of July 12, 2012, EPA OSC Jim Silver and START PM Kinroth met at the site to mark the perimeter of SU 19D (approximately 2,500 square feet), where a dioxin TEQ concentration of 589 ppt had been identified during the ESR sampling. During the perimeter marking process, roofing shingles that had been dumped and partially buried were observed within several areas of SU 19D. EPA and START speculated that the roofing shingles could be the source of the elevated dioxin TEQ concentration within this SU, because studies had documented production of dioxins and furans from asphalt plants and similar operations (Ministry for the Environment 2011). The property owner, Wesley Byrne, arrived on site later that day to excavate contaminated soil and other debris from the SU. Excavation proceeded to depths varying from 4 inches to 2.5 feet, depending on presence of buried shingles and other debris. The co-mingled contaminated soils, shingles, and other miscellaneous debris were placed into a 20-cubic-yard roll-off box, which was covered with plastic sheeting and left on site until finalization of disposal arrangements.

START PM Kinroth returned to the site on July 16, 2012, to conduct post-excavation soil sampling at SU 19D and to collect disposal profile samples of the excavated material in the roll-off box. A nine-aliquot surface soil sample (numbered SFPR-001) was collected from the freshly excavated soil surface of SU 19D, homogenized, and packaged in a 4-ounce amber glass jar for shipment to the laboratory (CFA) for analysis for dioxin TEQ compounds. A nine-aliquot sample of the co-mingled soil and shingles/debris (numbered SFPR-002) was collected from the roll-off box for dioxin TEQ analysis by CFA, and an additional portion of this sample (32-ounce jar) was submitted to TestAmerica laboratory in Earth City, Missouri, for disposal profiling analyses required by area landfills. These samples were shipped or delivered to the respective laboratories that afternoon. Prior to leaving the site, START photographed the excavated SU area. Pre- and post-excavation photo records of SU 19D are in Appendix C.

The analytical data package was received from CFA on July 19, 2012, and forwarded to Deanna Crumbling, Sampling Statistician with EPA Headquarters (HQ) in Washington, D.C., for calculation of Kaplan-Meier TEQ values on the two post-excavation samples. On July 20, 2012, START received the TEQ value calculator worksheets. The sample field sheets and data package from CFA are included in Appendix D. The TEQ calculation worksheets are included on a compact disk (CD) as Appendix E. Table 3 below lists the dioxin TEQ results from the post-excavation samples, and shows that the excavation was successful at lowering dioxin TEQ concentration within SU 19D (9.9 ppt) below the 50.5 ppt SSL for proposed residential use.

TABLE 3

DIOXIN TEQ CONCENTRATIONS – SU 19D (POST-EXCAVATION) PROPOSED STRECKER FOREST DEVELOPMENT SITE – WILDWOOD, MISSOURI

Sample Number	Date Collected	Sample Description/ Location	Dioxin TEQ (ppt)
SFPR-001	7-16-12	SU 19D (post-excavation)	9.9
SFPR-002	7-16-12	Co-mingled soil and roofing shingles in 20 yd ³ roll-off box	262.8

Notes:

pptParts per trillionSUSampling unit

TEQ Toxic equivalence

yd³ Cubic yards

As mentioned previously, START and EPA had speculated that the asphalt-backed roofing shingles found in SU 19D may have been the source of the elevated dioxin TEQ within this isolated area. Disposal profiling sample SFPR-002 of the excavated soil and shingles contained a dioxin TEQ level of 262.8 ppt, primarily due to elevated concentrations of octachlorodibenzo-p-dioxin/furan (OCDD/DF) and heptachlorodibenzo-p-dioxin/furan (HpCDD/DF) congeners, which ranged from 1,110 to 171,000 ppt in this sample (see Appendix D [CFA Data Package WO3782]). Because these dioxins/furans are common constituents of asphalt, these data support the speculation that the shingles were the primary source of the elevated dioxin TEQ in SU 19D, and explain the difference between the dioxin/furan congener profile in this sample versus the congener profile displayed in samples collected within the Bliss portion of the Ellisville site. Elevated dioxin TEQ levels associated with the Bliss portion of the Ellisville site were primarily due to the 2,3,7,8-TCDD congener.

The remainder of the disposal profiling data from sample SFPR-002 was received from TestAmerica on August 2, 2012. The requested analytical parameters for this sample included the Code R list (included in Appendix D)—as required by two prospective local landfills under consideration to receive the excavated material (Milam Landfill in East St. Louis, Illinois, and IESI Champ Landfill in Maryland Heights, Missouri). The IESI Champ Landfill also required results of Toxicity Characteristic Leaching Procedure (TCLP) analysis for pesticides/herbicides. The TestAmerica data package for this sample is included in Appendix D.

Upon receipt of all disposal profiling analytical data, START assisted the property owner with preparation of required applications and documentation to dispose of the excavated material at the IESI Champ Landfill in Maryland Heights, Missouri. This landfill had been selected by the property owner

because it was already an established vendor for his business, and the roll-off box containing the excavated material from the site had been deployed from that location. Because the dioxin TEQ concentration was less than 1,000 ppt, and all other disposal profiling parameters were non-detect or below LOCs, disposal of the 20 cubic yards of co-mingled soil and roofing shingles/debris at the IESI Champ Landfill was approved by the St. Louis County Department of Health and the IESI Champ Landfill. The manifest authorizing transportation and disposal of the waste was signed by the property owner/generator, Wesley Byrne, on August 7, 2012 (see Appendix F), and START was later notified by IESI Champ Landfill personnel that disposal had been completed as of August 10, 2012.

5.2 PERIMETER FENCE CONSTRUCTION AT EDA AND NPL AREA

On the morning of July 12, 2012, EPA, START, and ER PM Scott Allen met for a site walk of the EDA and NPL Area, where a perimeter fence would be placed to encircle the contaminated area to restrict human activity and trespasser access. The perimeter of the area to be fenced was defined so that prospective fencing subcontractors could provide cost estimates to ER for this service. Several prospective bidders were scheduled to visit the site that day to obtain information for the estimates.

On October 24, 2012, START PM Kinroth, Dave Williams from EPA Region 7, MDNR State OSC Don Van Dyke, ER PM Scott Allen, and a subcontracted fencing crew from Fence and Deck Depot, Inc., of St. Charles, Missouri, met at the site to begin fence construction activities. START was tasked to check the exact path the fencing contractor had selected for the fence before construction began, to ensure that no areas of contaminated surface soil were outside that boundary. The fencing crew then began staging materials on site that day. Fence installation was completed on October 30, 2012. START periodically photographed the construction process (see Appendix C) and created a Global Positioning System (GPS) track log of the fence perimeter (see Appendix A, Figure 3).

Additional sampling within this area is planned to further define the areal extent and estimated volume of soil contaminated with dioxin-related compounds, and to assess dioxin concentrations in surface soil at four DUs to be established on the adjacent Bliss-Ellisville site. These additional data will be used to assist with final decisions regarding disposition of the contaminated soils.

6.0 SUMMARY

Tetra Tech START was tasked by the EPA Region 7 Superfund Division to provide support during preliminary RA activities at the Strecker Forest site in Wildwood, Missouri. The first of these activities was a voluntary RA by the current property owner at one small area of the site (SU 19D) to address soil contaminated with low levels of dioxin-related compounds discovered during EPA investigation activities

US EPA ARCHIVE DOCUMENT 6.1 6.2

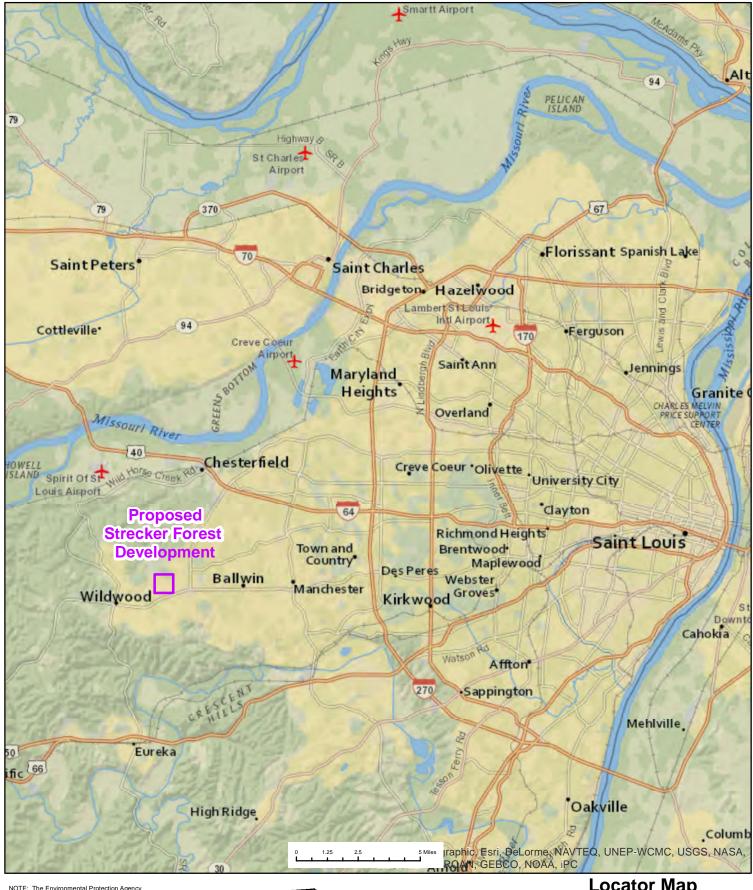
in 2011-2012. START provided (1) assistance with soil sampling and data management, (2) coordination between the property owner and the selected landfill to ensure compliance with disposal acceptance criteria, and (3) general site documentation. These activities were completed between July 12 and August 10, 2012. Post-excavation soil sampling showed the excavation had been successful at reducing the dioxin TEQ level in SU 19D to 9.9 ppt—below the SSL of 50.5 ppt for areas of the site proposed for residential development. The excavated material consisted of 20 cubic yards of co-mingled soil, roofing shingles, and other miscellaneous debris, which was accepted by the IESI Champ Landfill in Maryland Heights, Missouri, for disposal in August 2012.

The second preliminary RA activity involved construction of a perimeter fence to restrict access to an area in the northeast portion of the site where soil contaminated with dioxin-related compounds, specifically 2,3,7,8-TCDD at concentrations greater than 1,000 ppt, had been identified. EPA funded this fence construction activity with regional removal program funds and tasked the EPA Region 7 ERRS contractor (ER) to complete or subcontract the fence construction. ER subcontracted Fence and Deck Depot, Inc., of St. Charles, Missouri, to complete this task. START assisted with delineation and marking of the proposed fence-line perimeter, and provided oversight and site documentation during the fence construction activities from October 24-30, 2012.

6.1 REMOVAL CONSIDERATIONS

Additional sampling within the EDA and NPL Area in the northeast portion of the site is planned to (1) further define the areal extent and estimated volume of soil contaminated with dioxin-related compounds exceeding the SSL of 820 ppt (dioxin TEQ) for non-residential portions of the site, and (2) to assess current dioxin concentrations in surface soil at four DUs to be established on the adjacent Bliss-Ellisville site. These additional data will be used to assist with decisions regarding disposition of the contaminated soils.

6.2 PRE-REMEDIAL CONSIDERATIONS

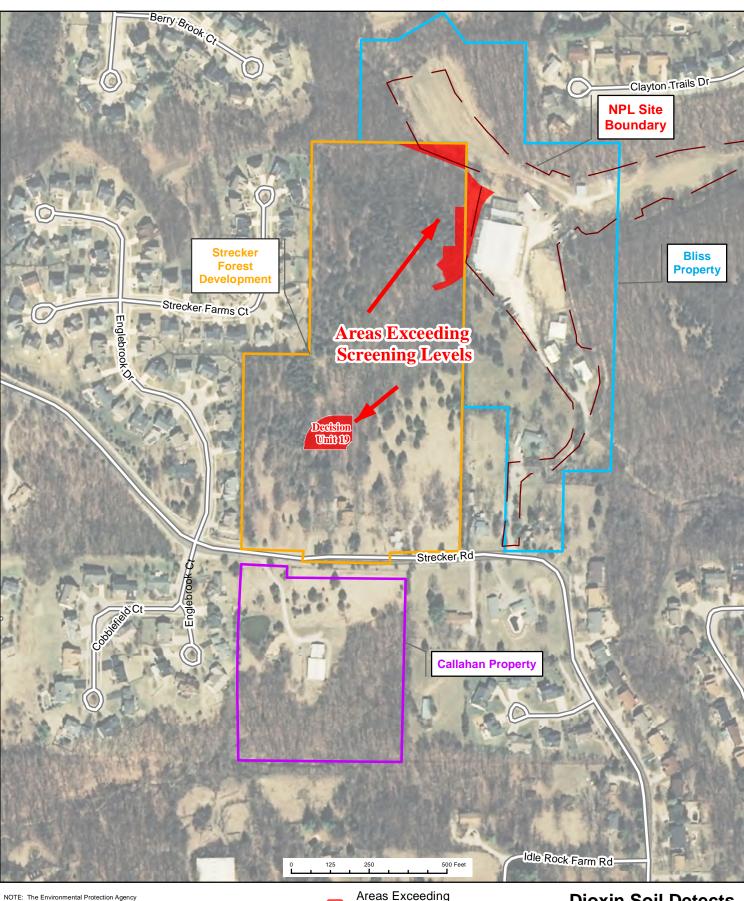

Section 4.0 summarizes evaluations of pre-remedial issues in previous site assessment reports issued by contractors for EPA and by MDNR. Upon completion of the planned RA to address the remaining dioxin-contaminated soils exceeding 820 ppt (dioxin TEQ), no known conditions warranting further pre-remedial assessment will be present at the site.

8.0 **REFERENCES**

- Ministry for the Environment. 2011. New Zealand Inventory of Dioxin Emissions to Air, Land and Water, and Reservoir Sources: 2011. Wellington: Ministry for the Environment.
- Missouri Department of Natural Resources (MDNR). 2005. Site Reassessment/Post Removal Sampling Report, Ellisville-Callahan Site, Wildwood, Missouri, St. Louis County. August 26.
- Mundell & Associates, Inc. (Mundell). 2010. Phase II Environmental Site Assessment Report, Proposed Strecker Forest Development Site, 165, 173 and 177 Strecker Road, Wildwood, Missouri 63011. MUNDELL Project No. M08044. March 3.
- Tetra Tech EM Inc. (Tetra Tech EMI). 2012. *Site Reassessment Report for an Expanded Site Review, Proposed Strecker Forest Development Site, Wildwood, Missouri.* Superfund Technical Assessment and Response Team (START) Contract EP-S7-06-01, Task Order No. 0002.058. June 13.
- Tetra Tech, Inc. (Tetra Tech). 2013. Removal Action Report Callahan Property Site, Wildwood, Missouri. Superfund Technical Assessment and Response Team (START) Contract EP-S7-06-01, Task Order No. 0316.000. March.
- U.S. Environmental Protection Agency (EPA). 2011. User Guide Uniform Federal Policy Quality Assurance Project Plan Template for Soils Assessment of Dioxin Sites. September. On-line address: http://www.epa.gov/superfund/health/contaminants/dioxin/pdfs/Dioxin%20 %20QAPP%20UserGuide.pdf.
- EPA. 2013. Regional Screening Levels. On-line address: http://www.epa.gov/reg3hwmd/risk/human/index.htm.

APPENDIX A

FIGURES



NOTE: The Environmental Protection Agency does not guarantee the accuracy, completeness, or timeliness of the information shown, and shall not be liable for any injury or loss resulting from reliance upon the information shown. 2/11/2013 CJM 1 Locator Map Removal Action.mxd

> Data Sources: ESRI National Geopgrahic Basemap GDT Streets 2007

Locator Map Ellisville NPL Site and proposed Strecker Forest Development

NOTE: The Environmental Protection Agency does not guarantee the accuracy, completeness, or timeliness of the information shown, and shall not be liable for any injury or loss resulting from reliance upon the information shown. 2/11/2013 CJM 2 Strecker Forest Detects.mxd N

Data Sources: S USGS Missouri Aerial Imagery 2007 (2 foot) GDT Streets (2007)

Areas Exceeding Regional Screening Levels \Box NPL Site Boundary Callahan Property **Proposed Strecker** Forest Development **Bliss Property**

Dioxin Soil Detects Strecker Forest Development

NOTE: The Environmental Protection Agency does not guarantee the accuracy, completeness, or timeliness of the information shown, and shall not be liable for any injury or loss resulting from reliance upon the information shown. 2/11/2013 CjM 3 Strecker Forest with Fence.mxd

Fence Line¹ (October 2012)

Pre-existing Fence Line²

Strecker Forest Boundary

Existing Structures

New Fence Location Ellisville Site Wildwood, Missouri **APPENDIX B**

EPA REGION 7 ACTION MEMORANDUM FOR PERIMETER FENCE CONSTRUCTION

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 7 901 NORTH 5TH STREET KANSAS CITY, KANSAS 66101

SEP 1 2 2012

ACTION MEMORANDUM

SUBJECT:	Approval and Funding for a Removal Action at the Ellisville Site, Wildwood,
	St. Louis County, Missouri
FROM:	David P. Williams, Federal On-Scene Coordinator
TROM.	Planning and Preparedness North Section
	Don Lipinger, Chief for
THRU:	Don Lininger, Chief (
	Planning and Preparedness North Section
THRU:	Cecilia Tapia, Director Japia
THRU.	Superfund Division
TO:	Karl Brooks
	Regional Administrator
C:1- T	2 # 0708

Site ID # 0708

I. PURPOSE

The purpose of this Action Memorandum is to request and document approval of the selected removal action described herein for the Ellisville Site (Site), Wildwood, St. Louis County, Missouri.

II. SITE CONDITIONS AND BACKGROUND

A. Site Description

CERCLIS ID #: Site ID#: Category of Removal: Nationally Significant/Precedent Setting: MOD980633010 0708 (RV005) Time-Critical Yes

1. Removal site evaluation

Strecker Forest is located directly adjacent to the Bliss subsite of the Ellisville Superfund Site. The Bliss subsite borders Strecker Forest to the north and east, and includes a small portion of a proposed preservation area in the northeast corner of the Strecker Forest property (see Attachment 1). Previous investigative activities begun on September 16, 1980, identified two waste disposal areas to the northwest of a horse arena on the property. On June 2, 1981, trenching operations

guided by eyewitness accounts identified buried drums at the Bliss subsite. Several follow-up geophysical surveys were conducted starting in June 1982 and continued through August 1990. These surveys identified buried waste at a number of locations on the Bliss and contiguous properties. The U.S. Environmental Protection Agency (EPA) implemented a removal action in 1996 involving excavation and management of soil impacted by dioxin and non-dioxin wastes, along with bulk wastes in buried drums and other materials. The removal activities included a 0.15-acre area in the extreme northeast corner of the Strecker Forest property (referred to as the "NPL Area" of Strecker Forest during past investigations).

From August 2011 through February 2012, the EPA conducted reassessment actions at the Site to, among other things, determine if contaminants were present in soil and groundwater at concentrations that could present a threat to human health and the environment for the proposed land use. Information and recommendations from this reassessment were summarized in the "Site Reassessment Report for an Expanded Site Review, Proposed Strecker Forest Development Site, Wildwood, Missouri," dated June 13, 2012.

One of the findings of this reassessment was the discovery of elevated dioxin toxic equivalent (TEQ) concentrations detected in surface and subsurface soil samples collected in the northeastern portion of the Strecker Forest parcel ("northeast area"). Dioxin TEQ concentrations as high as 26,684 parts per trillion were detected in subsurface soils; concentrations as high as 5,822 parts per trillion were detected in subsurface soils; concentrations as high as 5,822 parts per trillion were detected in surface soils. The reassessment concluded that, with regard to the northeast area, "immediate actions are not warranted in the short-term to mitigate exposure, while further site assessment is ongoing."

However, other factors suggest that isolating affected portions of the northeast area where elevated dioxin concentrations were found would be prudent. These other factors include: (1) uncertainty surrounding the timing on final decisions regarding contaminated soils in the northeast area; and (2) keeping the area "undisturbed" by human activity (e.g., planned development activities).

2. Physical location

The Ellisville Site includes property indicated on Attachment 1 as the "Bliss Property" and "Strecker Forest Development." The Strecker Forest Development property ("Strecker Forest") is the primary area where the proposed action will take place and, as such, is the primary area discussed in this action memorandum. Because of this, in lieu of describing the Site as the "Strecker Forest Development of the Ellisville Site," the shorthand of "Strecker Forest" is primarily used in the following discussions.

Strecker Forest is located in St. Louis County, Missouri, and includes three parcels of land encompassing 18.3 acres to the north of Strecker Road in Wildwood, Missouri. The three parcels include: the former Dozier property located at 165 Strecker Road (approximately five acres); the former Primm property located at 173 Strecker Road (approximately 10 acres); and the former Schoessel property located at 177 Strecker Road (approximately three acres). These three properties were purchased by W.J. Byrne Builders, Inc., of Glencoe, Missouri, with the intent to develop the proposed Strecker Forest subdivision.

3. Site characteristics

Strecker Forest is mostly undeveloped, except for foundations remaining from a recently demolished garage structure and two abandoned homes on the former Dozier and Primm properties. The northern two-thirds of Strecker Forest is covered mostly by hardwood forest. The property is surrounded by suburban residential areas, except to the north and east where a 12-acre tract with a residence, horse arena and stables is located. Specific features identified in previous investigations of the Strecker Forest property include the abandoned residences on the former Primm and Dozier properties, a "Western Pond Area" in the southwestern quadrant of the Site, a Solid Waste Disposal Area in a drainage ravine in the central portion of the Site, an Alleged Former Haul Road that parallels the drainage ravine, and an Eastern Disturbed Area (EDA) and National Priorities List (NPL) Area that are both located in the northeastern portion of the Site, sometimes referred to as the Bliss-Ellisville Site.

The terrain at the Strecker Forest property slopes downward to the north from Strecker Road. Relatively steep slopes are present that vary in elevation from approximately 720 feet at Strecker Road to approximately 635 feet along a tributary of Caulks Creek at the northeast perimeter of the Site in the NPL Area. The intermittent Caulks Creek tributary flows to the north along a ravine in the central portion of Strecker Forest and intersects another intermittent tributary crossing the northeast corner of the Strecker Forest property. All surface water and drainage pathways on the Site flow in a northerly direction toward this area.

Release or threatened release into the environment of a hazardous substance, or pollutant, or contaminant

TCDD (2,3,7,8,-tetrachlorodibenzo-p-dioxin) has been detected in soils at the Site. TCDD is listed as a hazardous substance pursuant to 40 CFR § 302.4. As such, TCDD is a hazardous substance as defined in section 101(14) of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), 42 U.S.C. § 9601(14).

5. NPL status

The Strecker Forest development area is not on the NPL. A portion of the northeast area where elevated dioxin TEQ concentrations were detected includes a small area of the Ellisville Superfund Site, which is on the NPL.

6. Maps, pictures and other graphic representations

A map of the Site is included as Attachment 1. The Confidential Enforcement Addendum is included as Attachment 2.

B. Other Actions to Date

1. Previous actions

See section II(A)(1).

2. Current actions

The Strecker Forest area has been proposed for residential development.

C. State and Local Authorities' Roles

1. State and local actions to date

The state of Missouri personnel have, among other things, provided input and feedback on proposed actions at the Site.

2. Potential for continued state/local response

It is expected that personnel from the state of Missouri will continue to provide input and feedback on matters concerning this Site.

III. THREATS TO PUBLIC HEALTH OR WELFARE OR THE ENVIRONMENT, AND STATUTORY AND REGULATORY AUTHORITIES

The Site conditions pose a threat to public health and welfare which meet the criteria for response action under 40 CFR § 300.415(b) of the National Contingency Plan (NCP), which are described as follows:

300.415(b)(2)(iv) - High levels of hazardous substances or pollutants or contaminants in soils largely at or near the surface that may migrate.

Dioxin TEQ concentrations as high as 26,684 parts per trillion were detected in subsurface soils; concentrations as high as 5,822 parts per trillion were detected in surface soils. A primary objective of this action is to ensure that these soils are left undisturbed pending future decisions on an overall response strategy for contaminated soils in the area.

Potential development activities could include the clearing, grubbing, grading, etc. of soils near or adjacent to the areas of high dioxin TEQ concentrations. Erecting a fence around such areas would provide a visual "marker" that would ensure that these areas are left undisturbed.

IV. ENDANGERMENT DETERMINATION

Actual or threatened releases of hazardous substances from this Site may present an imminent and substantial endangerment to public health, or welfare or the environment.

V. PROPOSED ACTIONS AND ESTIMATED COSTS

A. Proposed Actions

1. Proposed action description

The proposed action is the installation of a fence that will encircle most or all dioxin TEQ concentrations that exceed 50 parts per trillion in surface soils. In addition, signs will be placed at one or more locations around the fence which will advise against entry/trespassing.

Post-removal site control activities (e.g., repair of fencing) will be conducted by the landowner(s). An agreement to conduct such work is under development.

2. Contribution to remedial performance

The proposed actions will, to the extent practicable, contribute to the efficient performance of any long-term remedial action.

3. Engineering Evaluation/Cost Analysis (EE/CA)

Not applicable.

Applicable or relevant and appropriate requirements (ARARs)

No state or federal ARARs have been identified for the proposed action.

5. Project schedule

Once initiated, it is expected that the fence and warning signs can be installed within several days.

B. Estimated Costs

PROJECT CEILING ESTIMATE Extramural Costs:	- 1
Extrainural Costs:	
Regional Removal Allowance Costs:	1
Total Cleanup Contractor Costs	\$25,000
3101 5 7 150	
Extramural Costs Contingency	5,000
TOTAL REMOVAL ACTION PROJECT CEILING	\$30,000

VI. EXPECTED CHANGE IN THE SITUATION SHOULD ACTION BE DELAYED OR NOT TAKEN

Delayed action may increase public health risks to the adjacent population due to disturbance and/or migration of the contaminated soil.

VII. OUTSTANDING POLICY ISSUES

None.

VIII. ENFORCEMENT

Using the extramural cost calculation summarized above (\$30,000), an estimate of the EPA's direct intramural costs (\$10,000) and 27.52 percent as the regional indirect cost rate, the total estimated EPA costs for the removal would be:

(\$30,000 + \$10,000) + (27.02 percent x \$40,000) = \$50,808.

The total cost for this removal action based on full-cost accounting practices that will be eligible for cost recovery is estimated to be \$50,808.

Direct costs include direct extramural costs and direct intramural costs. Indirect costs are calculated based on an estimated indirect cost rate expressed as a percentage of site-specific direct costs, consistent with the full cost-accounting methodology effective October 2, 2000. These estimates do not include prejudgment interest, do not take into account other enforcement costs, including Department of Justice costs, and may be adjusted during the course of a removal action. The estimates are for illustrative purposes only and their use is not intended to create any rights for responsible parties. Neither the lack of a total cost estimate nor deviation of actual total costs from this estimate will affect the United States' right to cost recovery.

See attached Confidential Enforcement Addendum for additional information.

IX. RECOMMENDATION

This decision document represents the selected removal action for the Ellisville Site in Wildwood, Missouri, developed in accordance with CERCLA as amended, and is not inconsistent with the NCP. This decision is based on the administrative record for the Site.

Conditions at the Site meet the NCP section 300.415(b) criteria for a removal and I recommend your approval of the proposed removal action. The total project ceiling, if approved, will be \$30,000. This amount comes from the regional removal allowance.

Karl Br

SEP 1 2 2012

Attachments

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 7 901 NORTH 5TH STREET KANSAS CITY, KANSAS 66101

AUG 3 1 2012

MEMORANDUM

SUBJECT: Request for Concurrence on Proposed Nationally Significant or Precedent-Setting Removal

FROM: Cecilia Tapia, Director Superfund Division, EPA Region

(Japia)

TO: Lawrence M. Stanton, Director Office of Emergency Management

The purpose of this Memorandum is to request your concurrence on the proposed removal action at the Ellisville Site in Wildwood, Missouri. Redelegation of Authority R-14-2 gives you the authority to concur on nationally significant or precedent-setting removals.

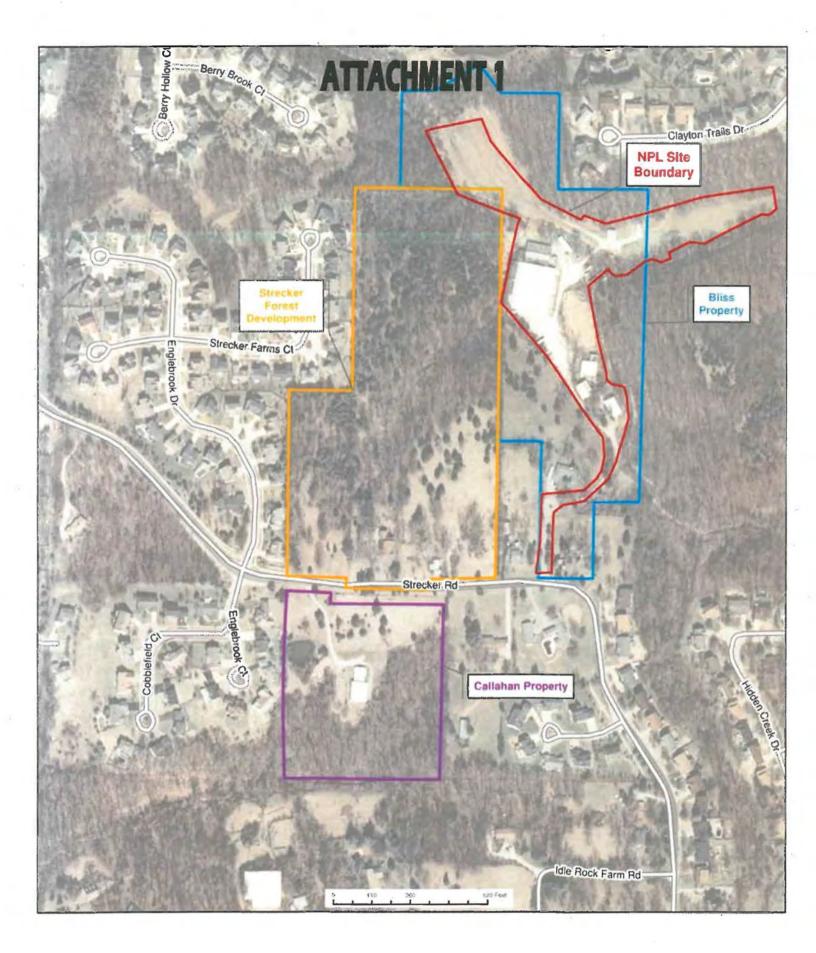
The On-Scene Coordinator has discussed this proposed removal with staff of the Office of Emergency Management's Program Operations and Coordination Division. POCD has advised the OSC that this removal is considered nationally significant or precedent-setting because it involves dioxin contamination.

The Action Memorandum is attached for your review. My approval awaits your concurrence.

Concur

Lawrence M. Stanton Director, Office of Emergency Management

Date


Antonio

According to the re-delegation, authority to non-concur remains with the Assistant Administrator. If you choose not to concur on this action, please forward this memorandum to the Assistant Administrator.

Non-Concur:

Mathy Stanislaus, Assistant Administrator Office of Solid Waste and Emergency Response Date

Y

APPENDIX C

PHOTOGRAPHIC DOCUMENTATION

Μ	lissouri Dioxin Site	s - Strecker Forest Preliminary Removal Activities Wildwood, Missouri	
TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the south perimeter of Sampling Unit (SU) 19D marked for excavation of soil impacted by elevated levels of dioxin-related compounds.	1
X9004.12.0293.001 DIRECTION: East	CLIENT PHOTOGRAPHER	Environmental Protection Agency - Region 7 Dave Kinroth	DATE 7/12/12
TETRA TECH	DESCRIPTION	This photograph shows a 20-cubic-yard roll-off box staged next to	2
TETRA TECH PROJECT NO.		SU 19D to hold excavated soil and debris.	2

N	lissouri Dioxin Sites	s - Strecker Forest Preliminary Removal Activities Wildwood, Missouri	
TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows roofing shingles in SU 19D. The shingles were determined to be the likely source of dioxin-related contamination in soils in that area.	3
X9004.12.0293.001 DIRECTION: NA	CLIENT	Environmental Protection Agency - Region 7	DATE
	PHOTOGRAPHER	Dave Kinroth	7/12/12
		B ZODEN	
TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows SU 19D after excavation of dioxin- contaminated soils, shingles, and other debris by the property owner.	4
	DESCRIPTION CLIENT PHOTOGRAPHER	This photograph shows SU 19D after excavation of dioxin-contaminated soils, shingles, and other debris by the property owner. Environmental Protection Agency - Region 7 Dave Kinroth	4 DATE 7/16/12

Mi	issouri Dioxin Sites	- Strecker Forest Preliminary Removal Activities Wildwood, Missouri	
TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows installation of a perimeter fence around dioxin-contaminated soil near the northeast corner of the Strecker Forest property.	7
X9004.12.0293.001 DIRECTION: Northwest	CLIENT PHOTOGRAPHER	Environmental Protection Agency - Region 7 Dave Kinroth	DATE 10/25/12
TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the perimeter fence installed at the northeast corner of the Strecker Forest property and on the adjacent Bliss- Ellisville site.	8
X9004.12.0293.001 DIRECTION: West	CLIENT	Environmental Protection Agency - Region 7	DATE
	PHOTOGRAPHER	Dave Kinroth	10/30/12

Ν	Iissouri Dioxin Site	s - Strecker Forest Preliminary Removal Activities Wildwood, Missouri		
	DESCRIPTION	This photograph shows the northwest corner of the fence on the		
TETRA TECH PROJECT NO.	DESCRIPTION	Strecker Forest property.	9	
X9004.12.0293.001 DIRECTION: East	CLIENT Environmental Protection Agency - Region 7 PHOTOGRAPHER Dave Kinroth			
	and the second second			
TETRA TECH	DESCRIPTION	This photograph shows the south portion of the perimeter fence on the Strecker Forest property.	10	
TETRA TECH PROJECT NO. X9004.12.0293.001 DIRECTION: East	DESCRIPTION CLIENT	This photograph shows the south portion of the perimeter fence on the Strecker Forest property. Environmental Protection Agency - Region 7	10 DATE 10/30/1	

М	issouri Dioxin Sites	- Strecker Forest Preliminary Removal Activities Wildwood, Missouri	
TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows a gate constructed on the southwest corner of the perimeter fence on the Strecker Forest property.	11
X9004.12.0293.001 DIRECTION: Northeast	CLIENT PHOTOGRAPHER	Environmental Protection Agency - Region 7 Dave Kinroth	DATE 10/30/12
TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the southeast corner of the perimeter fence on the Strecker Forest property.	12
X9004.12.0293.001 DIRECTION: Northeast	CLIENT PHOTOGRAPHER	Environmental Protection Agency - Region 7 Dave Kinroth	DATE 10/30/12

APPENDIX D

POST-EXCAVATION SAMPLING DOCUMENTATION AND RESULTS

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY.REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY. KS. 66115

Size Name: Strecker Forest Development Site Super-und Site No: Citv/State: OM, GOOWDIIW Epa Number: SFPR-001 Priority: High Contract Number: Medium: Sofl Clean-up Area 1st Lift Date Collected: 7-16-12 4" to 2.5 remover) Laver TIME: 1.4.30 Team Leader: Sampiers: Kinnth Sample Jeoth: 0-2 ... No. Of Aliquota: 9 CCMMENTE: Semple unit 190 post exaution after removal of dioxin TEQ Soils + shingles greater than 75 ppt to nearly 600ppt TEQ ANAL FIS SEQUESTED PRESERVATIVE SAMPLE CONTAINER 1613B 402 jar YOU dioxins/furans

П

FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY.REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY. KS. 66115

Site Name: Strecker Forget Development Ste Super-und Site No: NA Sita Code: Wildwood MO Epa Number: SFPR-002 Priority: High Soll + demolition Contract Number Medium: (roofing shingles) Dana Collacted: 7-16-12 TIME: 1455 Laver NA Team Leader: Inmigre: Dave Kfuroth Sameia Jeonn: NA No. Of Aliquota: 9 COMMENTE:

20 Cubic yard rolloff box of co-mingled Soil & roofing shingles demolition debris - sampled according to EPAERT SOP for waste pile sampling using represendative protocol

SAMPLE CONTAINER		ANAL FIE REQUESTED .
3202. Wide mouth	4°C.	Code R List Attached +
+ 402 jar	IE	1613Bdioxixs Furanswith

CODE R

Standard analytical required at all our landfills with the exceptions shown below

State of Illinois Permit

pH Paint Filter (Free Liquids) Reactive Cyanide Reactive Sulfide Total Phenolics Flash Point (Open Cup) PCB's (if suspect or unknown) F-Code Solvent Scan (if suspect or unknown) TOX (required only for Five Oaks, Milam, Tazewell, and Cottonwood Hills for liquids for solidification)

TCLP Organics

TCLP Metals

Benzene Carbon Tetrachloride Chlorobenzene Chloroform o-Cresol m-Cresol p-Cresol 1,4-Dichlorobenzene 1,2-Dichlorethane 1,1-Dichloroethene 2.4-Dinitrotoluene Hexachlorobenzene Hexachloro-1.3 butadiene Hexachloroethane Methyl Ethyl Ketone Nitrobenzene Pentachlorophenol Pyridine Tetrachloroethylene Trichloroethylene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol Vinyl Chloride

Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver

EXCEPTIONS

Not required for UST petroleum fuel product contamination. What is required for UST petroleum fuel product contamination is pH, paint filter, flash point, and TCLP lead. Not required for wood material contaminated with creosol. For creosol contamination, if the waste is over 10 years old and is weathered, no analytical is required. If less than 10 years and/or not weathered, TCLP Arsenic, TCLP Creosol, and TCLP Pentachlorophenol are required.

an affiliate of The GEL Group INC

3306 Kitty Hawk Road, Suite 120 Wilmington, NC 28405 P 910.795.0421

www.capefearanalytical.com

July 19, 2012

Mr. David Kinroth Seagull Environmental Technologies, Incorporated 20 James Town Farm Drive Florissant, Missouri 63034

Re: Strecker Forest Development 1613B Work Order: 3782

Dear Mr. Kinroth:

Cape Fear Analytical LLC (CFA) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on July 17, 2012. This original data report has been prepared and reviewed in accordance with CFA's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at 910-795-0421.

Sincerely,

upide Larking

Cynthia Larkins Project Manager

Purchase Order: 1084802 Enclosures

tha Tech P	0.108	3480	12					-	retr	ate	ch	Inte	mat
WEEK tur		\	~ ^	HAIN OF	OH 378 CUSTODY RE ITECTION AGE	2 Cord Ncy R	EGION		Τ6	x 700	54.1	2.07	<u>9</u> 3p
ACTIVITY LEADER(P	rint)		NAME	OF SURVE	Y OR ACTIVITY	Υ <u></u>		- T	DATEOF	COLLEGTION	12	SHEET	
Jimsihrer		-Kin	Nota S	-	61 Fe		<u>51</u>	<u> </u>	OAY		YEAR	/ of	1
CONTENTS OF SHIP	VENT			Pos	F Ren	NON	<u>al</u>	Sa.		ng			
SAMPLE NUMBER		BOTTLE	TAINERS PER SA	Collect	VOA SET (2 VIALS EA)	Sam soil soil	M Dala	EDIA other	bris	REMARKS/OTH (condition of sa other sample	IER INFORM	AATION receipt	:
SFPR-001		XI	7/16/12	143		X			F	111 57	àrs	ofso	\overline{D}
SFPR-002			7/16/12			TX		X	Λ.			~ 15	<u></u>
					·		++			hary 2	13	13 -	⋽┤
					$+ \sim$	FF-		-		<u>y 76</u>		$\underline{\mathcal{P}}$	{
						╞╌┼╴	┼╌┼	_					
				<u> </u>		++	╏╻		\vdash				
· · · · · · · · · · · · · · · · · · ·						┡╌┣╴		\checkmark					
							$ \mathcal{X} $	1	Ca	lection	da	tes a	nd
		i					11		dim	es on	CO	c-tal	cen
						K			fron	n San	ale	label	5
									at	CFA	Cal	17.14	42
						\uparrow				<u> </u>	<u> </u>		
					\checkmark	<u>†</u> <u></u> -		Δ.	<u> </u>				
						╞┼┼	╄╌┤ _┛	╧╫		<i>.</i>			
				\checkmark	_	1a	he		h	·			
			/		Starle	₽ -	╉┈╋						
					V	$\left \right $	16	-12	<u> </u>				
·		-				11	1						
								·	 				
						Ĺ							
													ľ
		<u> </u>										· · · ·	
· · · · · · · · · · · · · · · · · · ·	/		1			\uparrow		- I	<u> </u>				
						╋╌┼╴	++	-					
						╞┼┼	┼┼	+	<u> </u>				
DESCRIPTION OF SH			<u> </u>	1	MODE OF SH		T.						
		<u></u>			57					PC AY			{
PIECE(S) C	ONSISTING OI	F	BOX(ES)		COMME		CARRII	ER:	<u> </u>	<u>-060</u>	890	863	5
	(S): OTHER	<u> </u>	<u> </u>	<u> </u>	SAMPL		IVEYEO)	C	PPING DOCU			23
PERSONNEL CUSTO	OY BECOBD								(+				
RELINQUISHED BY		DA		REC	EIVED BY		17.)	nliz	REASO	N FOR CHA	NGE D	F CUSTOR	Y L
Dove Ku	right	15-	16-12-16	50 6	merit	ins	09	51		ans po	ריי	-70L	40
SEALED	UNSEAL				EALED	0	NSEAL	ED		101	HY	unys	<u> ></u>
RELINQUISHED BY		DA	TE TIME		EIVED BY				REASC	N FOR CH	ANGE C	n C99101	Т
ISEALED	UNSEAL				EALED		NSEA	ίεο Γ	4				
RELINQUISHED BY	UNSEAL				CEIVED BY			<u>-</u> 1_	REASC	N FOR CH	ANGE	DF CUSTO	DY
1		1											
		ĺ			EALED		INSEA						1

US EPA ARCHIVE DOCUMENT

		S			ECEIPT CHECKLIST
Clie	INTETR		·		Work Order: 3781 378
Re	ceived By: Cipude La	k	ù	1	Date/Time Received: 17 JULI 0951
Sus	pected Hazard Information	Yes	NA	No]
	pped as DOT Hazardous?		V/		
Sar	nples identified as Foreign Soil?			L	
	Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	C			Circle Applicable: seals broken damaged container leaking container other(describe)
2	Chain of Custody documents included with shipment?	v			
3	Samples requiring cold preservation within 0-6°C?	C	-	(Preservation Method: The bags blue ice dry ice none other (describe) 4.2°C
4	Samples requiring chemical preservation at proper pH?		L		Sample IDs, containers affected and pH observed: If preservative added, Lot#:
5	Samples requiring preservation have no residual chlorine?		~	P	Sample IDs, containers affected: If preservative added, Lot#:
6	Samples received within holding time?	レ		-	Sample IDs, tests affected:
7	Sample IDs on COC match IDs on containers?	C			Sample IDs, containers affected:
8	Date & time of COC match date & time on containers?	~			Sample IDs, containers affected:
9	Number of containers received match number indicated on COC?	V			Sample IDs, containers affected:
10	COC form is properly signed in relinquished/received sections?	\checkmark			
Col	nments:		<u></u>		

Checklist performed by: Initials:

US EPA ARCHIVE DOCUMENT

P

Date:

7JUL12

High Resolution Dioxin and Furan Analysis

Case Narrative

HDOX Case Narrative Tetra Tech EM Incorporated (TETR) SDG 3782

Method/Analysis Information

Product:

Dioxins/Furans by EPA Method 1613B in Solids

Analytical Method:EPA Method 1613BExtraction Method:SW846 3540CAnalytical Batch Number:21574Clean Up Batch Number:21573Extraction Batch Number:21572

Sample Analysis

The following samples were analyzed using the analytical protocol as established in EPA Method 1613B:

Sample ID	Client ID
3782001	SFPR-001
3782002	SFPR-002
12006427	Method Blank (MB)
12006428	Laboratory Control Sample (LCS)
12006429	Laboratory Control Sample Duplicate (LCSD)
12006430	3782001(SFPR-001) Matrix Spike (MS)
12006431	3782001(SFPR-001) Matrix Spike Duplicate (MSD)
12006437	3778001(129178-13-0657) Sample Duplicate (DUP)

The samples in this SDG were analyzed on a "dry weight" basis.

Preparation/Analytical Method Verification

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by Cape Fear Analytical LLC (CFA) as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with CF-OA-E-002 REV# 9.

Raw data reports are processed and reviewed by the analyst using the TargetLynx software package.

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this sample delivery group (SDG).

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

Quality Control (QC) Information

Certification Statement

The test results presented in this document are certified to meet all requirements of the 2003 NELAC Standard.

Method Blank (MB) Statement

The MB(s) analyzed with this SDG met the acceptance criteria.

Surrogate Recoveries

All surrogate recoveries were within the established acceptance criteria for this SDG.

Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

Laboratory Control Sample Duplicate (LCSD) Recovery

The LCSD spike recoveries met the acceptance limits.

LCS/LCSD Relative Percent Difference (RPD) Statement

The RPD(s) between the LCS and LCSD met the acceptance limits.

QC Sample Designation

Sample 3782001 (SFPR-001)- Batch 21574 was selected for analysis as the matrix spike and matrix spike duplicate.

Matrix Spike/Duplicate (MS/MSD) Recovery Statement

Two MS/MSD recoveries were outside the acceptance limits. Sample data is validated based on acceptable LCS/LCSD results. 12006430 (SFPR-001) and 12006431 (SFPR-001)- Batch 21574.

MS/MSD Relative Percent Difference (RPD) Statement

The RPD(s) between the MS and MSD met the acceptance limits.

Technical Information

Holding Time Specifications

CFA assigns holding times based on the associated methodology, which assigns the date and time from sample collection. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

Sample 3782002 (SFPR-002) was diluted due to the presence of overrange target analytes.

Sample Re-extraction/Re-analysis

Re-extractions or re-analyses were not required in this SDG.

Miscellaneous Information

Nonconformance (NCR) Documentation

A NCR was not required for this SDG.

Manual Integrations

Certain standards and QC samples required manual integrations to correctly position the baseline as set in the calibration standard injections. Where manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this fraction. Manual integrations were required for data files in this SDG.

Sample preparation

No difficulties were encountered during sample preparation.

Electronic Packaging Comment

This data package was generated using an electronic data processing program referred to as virtual packaging. In an effort to increase quality and efficiency, the laboratory has developed systems to generate all data packages electronically. The following change from traditional packages should be noted: Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative will include the data validator's signature and title. The signature page also includes the data qualifiers used in the fractional package. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

Sample Data Summary

Cape Fear Analytical, LLC

3306 Kitty Hawk Road Suite 120, Wilmington, NC 28405 - (910) 795-0421 - www.capefearanalytical.com

Certificate of Analysis Report for

TETR001 Tetra Tech EM Incorporated

Client SDG: 3782 CFA Work Order: 3782

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- E Value is estimated Concentration of the target analyte exceeds the instrument calibration range
- J Value is estimated
- U Analyte was analyzed for , but not detected above the specified detection limit.

Review/Validation

Cape Fear Analytical requires all analytical data to be verified by a qualified data reviewer.

The following data validator verified the information presented in this case narrative:

Signature: Heath attase

Date: 19 JUL 2012

Name: Heather Patterson Title: Analyst III

	Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary						
SDG Number Lab Sample I Client Sampl	ID: 3782001	Client: Date Collected: Date Received:	TETR001 07/16/2012 14:30 07/17/2012 09:51		Project: Matrix: %Moisture:	TETR00111 SOLID 8.5	
Client ID: Batch ID: Run Date: Data File:	SFPR-001 21574 07/19/2012 02:56 A17JUL12A_6-4	Method: Analyst:	EPA Method 1613B MJC		Prep Basis: Instrument: Dilution:	Dry Weight HRP750 1	
Prep Batch: Prep Date:	21572 17-JUL-12	Prep Method: Aliquot:	SW846 3540C 11.46 g				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
1746-01-6	2,3,7,8-TCDD	J	0.540	pg/g	0.149	0.953	
0321-76-4	1,2,3,7,8-PeCDD	1	0.637	pg/g	0.151	4.77	
9227-28-6	1,2,3,4,7,8-HxCDD	J	1.85	pg/g	0.427	4.77	
7653-85-7	1,2,3,6,7,8-HxCDD		5.19	pg/g	0.419	4.77	
9408-74-3	1,2,3,7,8,9-HxCDD	J	3.51	pg/g	0.437	4.77	
5822-46-9	1,2,3,4,6,7,8-HpCDD		447	pg/g	2.27	4.77	
268-87-9	1,2,3,4,6,7,8,9-OCDD	E	7450	pg/g	2.12	9.53	
1207-31-9	2,3,7,8-TCDF		1.03	pg/g	0.208	0.953	
7117-41-6	1,2,3,7,8-PeCDF	J	0.623	pg/g	0.177	4.77	
7117-31-4	2,3,4,7,8-PeCDF	J	0.541	pg/g	0.185	4.77	
0648-26-9	1,2,3,4,7,8-HxCDF	J	0.843	pg/g	0.250	4.77	
7117-44-9	1,2,3,6,7,8-HxCDF	1	0.578	pg/g	0.244	4.77	
0851-34-5	2,3,4,6,7,8-HxCDF	1	1.29	pg/g	0.288	4.77	
2918-21-9	1,2,3,7,8,9-HxCDF	U	.313	pg/g	0.313	4.77	
7562-39-4	1,2,3,4,6,7,8-HpCDF		34.9	pg/g	0.343	4.77	
5673-89-7	1,2,3,4,7,8,9-HpCDF	J	1.55	pg/g	0.681	4.77	
9001-02-0	1,2,3,4,6,7,8,9-OCDF		180	pg/g	0.419	9.53	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		127	191	pg/g	66.5	(25%-164%)
13C-1,2,3,7,8-PeCDD		122	191	pg/g	64.1	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		119	191	pg/g	62.3	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		121	191	pg/g	63.6	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		119	191	pg/g	62.2	(23%-140%)
13C-OCDD		262	381	pg/g	68.6	(17%-157%)
13C-2,3,7,8-TCDF		121	191	pg/g	63.3	(24%-169%)
13C-1,2,3,7,8-PeCDF		125	191	pg/g	65.4	(24%-185%)
13C-2,3,4,7,8-PeCDF		127	191	pg/g	66.6	(21%-178%)
13C-1,2,3,4,7,8-HxCDF		120	191	pg/g	62.8	(26%-152%)
13C-1,2,3,6,7,8-HxCDF		119	191	pg/g	62.6	(26%-123%)
13C-2,3,4,6,7,8-HxCDF		108	191	pg/g	56.6	(28%-136%)
13C-1,2,3,7,8,9-HxCDF		130	191	pg/g	68.3	(29%-147%)
13C-1,2,3,4,6,7,8-HpCDF		126	191	pg/g	66.2	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		111	191	pg/g	58.1	(26%-138%)
37Cl-2,3,7,8-TCDD		16.0	19.1	pg/g	83.7	(35%-197%)

E Value is estimated - Concentration of the target analyte exceeds the instrument calibration range

J Value is estimated

Cape Fear An	alytical LLC					Report Date:	July 19, 2012
		Hi-Res I	Dioxins/Furans			Page 1	of 1
		Certific	ate of Analysis				
		Samp	ole Summary				
SDG Number:	3782	Client:	TETR001		Project:	TETR00111	
Lab Sample ID:	3782001	Date Collected:	07/16/2012 14:30		Matrix:	SOLID	
Client Sample:	1613B Soil	Date Received:	07/17/2012 09:51		%Moisture:	8.5	
Client ID:	SFPR-001				Prep Basis:	Dry Weight	
Batch ID:	21574	Method:	EPA Method 1613B		-		
Run Date:	07/19/2012 09:32	Analyst:	MJC		Instrument:	HRP763	
Data File:	b19jul12a-4				Dilution:	1	
Prep Batch:	21572	Prep Method:	SW846 3540C				
Prep Date:	17-JUL-12	Aliquot:	11.46 g				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
51207-31-9 2,3	,7,8-TCDF		1.04	pg/g	0.307	0.953	
Surrogate/Trace	r recovery	Qual Result	Nominal Units	Recovery%	6 Acceptat	ole Limits	

E Value is estimated - Concentration of the target analyte exceeds the instrument calibration range

J Value is estimated

		Certific	Dioxins/Furans ate of Analysis lle Summary			Page 1 of 1
SDG Numbe Lab Sample Client Sampl	ID: 3782002	Client: Date Collected: Date Received:	TETR001 07/16/2012 14:55 07/17/2012 09:51		Project: Matrix: %Moisture:	TETR00111 SOLID 9.2
Client ID: Batch ID: Run Date: Data File:	SFPR-002 21574 07/19/2012 09:11 A17JUL12A_6-12	Method: Analyst:	EPA Method 1613B MJC		Prep Basis: Instrument: Dilution:	Dry Weight HRP750 20
Prep Batch: Prep Date:	21572 17-JUL-12	Prep Method: Aliquot:	SW846 3540C 11.42 g			
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD	U	2.01	pg/g	2.01	19.3
40321-76-4	1,2,3,7,8-PeCDD	U	1.63	pg/g	1.63	96.5
39227-28-6	1,2,3,4,7,8-HxCDD	J	16.4	pg/g	4.75	96.5
57653-85-7	1,2,3,6,7,8-HxCDD		140	pg/g	4.98	96.5
19408-74-3	1,2,3,7,8,9-HxCDD	J	51.6	pg/g	5.04	96.5
35822-46-9	1,2,3,4,6,7,8-HpCDD		17200	pg/g	23.0	96.5
3268-87-9	1,2,3,4,6,7,8,9-OCDD	E	171000	pg/g	33.2	193
51207-31-9	2,3,7,8-TCDF	U	1.63	pg/g	1.63	19.3
57117-41-6	1,2,3,7,8-PeCDF	U	1.33	pg/g	1.33	96.5
57117-31-4	2,3,4,7,8-PeCDF	U	1.36	pg/g	1.36	96.5
70648-26-9	1,2,3,4,7,8-HxCDF	J	7.19	pg/g	2.91	96.5
57117-44-9	1,2,3,6,7,8-HxCDF	J	3.18	pg/g	3.01	96.5
60851-34-5	2,3,4,6,7,8-HxCDF	J	22.4	pg/g	3.38	96.5
72918-21-9	1,2,3,7,8,9-HxCDF	J	4.44	pg/g	4.19	96.5
67562-39-4	1,2,3,4,6,7,8-HpCDF		1110	pg/g	5.48	96.5
55673-89-7	1,2,3,4,7,8,9-HpCDF	J	40.0	pg/g	8.55	96.5
39001-02-0	1,2,3,4,6,7,8,9-OCDF		8100	pg/g	9.90	193

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		169	193	pg/g	87.5	(25%-164%)
13C-1,2,3,7,8-PeCDD		208	193	pg/g	108	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		170	193	pg/g	88.1	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		170	193	pg/g	88.3	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		188	193	pg/g	97.6	(23%-140%)
13C-OCDD		383	386	pg/g	99.3	(17%-157%)
13C-2,3,7,8-TCDF		164	193	pg/g	85.0	(24%-169%)
13C-1,2,3,7,8-PeCDF		183	193	pg/g	94.7	(24%-185%)
13C-2,3,4,7,8-PeCDF		199	193	pg/g	103	(21%-178%)
13C-1,2,3,4,7,8-HxCDF		177	193	pg/g	91.8	(26%-152%)
13C-1,2,3,6,7,8-HxCDF		169	193	pg/g	87.6	(26%-123%)
13C-2,3,4,6,7,8-HxCDF		151	193	pg/g	78.5	(28%-136%)
13C-1,2,3,7,8,9-HxCDF		179	193	pg/g	93.0	(29%-147%)
13C-1,2,3,4,6,7,8-HpCDF		174	193	pg/g	90.3	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		179	193	pg/g	92.7	(26%-138%)
37Cl-2,3,7,8-TCDD		16.4	19.3	pg/g	85.2	(35%-197%)

E Value is estimated - Concentration of the target analyte exceeds the instrument calibration range

J Value is estimated

Quality Control Summary

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: 3782

Matrix Type: SOLID

12006428 LCS for batch 21572 13C-2,3,7,8-TCDD 88.2 13C-1,2,3,7,8-PCDD 86.2 13C-1,2,3,7,8-PCDD 86.2 13C-1,2,3,7,8-PCDD 92.3 13C-1,2,3,7,8-PCDD 87.5 13C-1,2,3,7,8-PCDF 86.0 13C-1,2,3,7,8-PCDF 86.0 13C-1,2,3,7,8-PCDF 86.0 13C-1,2,3,7,8-PCDF 86.0 13C-1,2,3,7,8-PCDF 86.0 13C-1,2,3,7,8-PCDF 86.0 13C-1,2,3,7,8-PCDF 86.0 13C-1,2,3,7,8-PCDF 86.0 13C-1,2,3,7,8-PCDF 87.8 13C-1,2,3,7,8-PCDF 88.0 13C-1,2,3,7,8-PCDF 80.6 13C-1,2,3,7,8-PCDF 88.7 13C-1,2,3,7,8-PCDF 83.8 37C+2,3,7,8-PCDF 83.8 37C+2,3,7,8-PCDD 88.7 13C-1,2,3,7,8-PCDF 83.9 12006429 LCSD for batch 21572 13C-2,3,7,8-PCDF 83.3 13C-1,2,3,7,8-PCDF 83.3 13C-2,3,7,8-PCDF 83.3 13C-1,2,3,7,8-PCDF 83.3 13C-2,3,7,8-PCDF 83.3 13C-1,2,3,7,8-PCDF 83.3 13C-2,3,7,8-PCDF 83.3 1	Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
1201-23.47,8-HCDD 83.6 13C-12.34,7.8-HCDD 87.5 13C-12.34,7.8-HCDD 87.5 13C-0CDD 81.7 13C-12.37,8-PCDF 85.0 13C-12.37,8-PCDF 86.0 13C-12.37,8-PCDF 88.4 13C-12.37,8-PCDF 88.7 13C-12.37,8-PCDF 88.7 13C-12.37,8-PCDF 88.7 13C-12.37,8-PCDD 86.7 13C-12.37,8-PCDD 86.7 13C-12.37,8-PCDD 86.7 13C-12.37,8-PCDD 80.3 13C-12.37,8-PCDD 80.3 13C-12.37,8-PCDF 87.7 13C-12.37,8-PCDF 87.7 13C-12.37,8-PCDF 87.7 13C-12.37,8-PCDF 87.7 13C-12.37,8-PCDF 87.7 13C-12.37,8-PCDF <t< td=""><td>2006428</td><td>LCS for batch 21572</td><td>13C-2,3,7,8-TCDD</td><td></td><td></td><td>(20%-175%)</td></t<>	2006428	LCS for batch 21572	13C-2,3,7,8-TCDD			(20%-175%)
13C12.3.6.7.8.HCDD 92.3 13C.12.3.6.7.8.HCDD 87.5 13C.0CDD 81.7 13C.2.3.7.8.HCDF 85.0 13C.2.3.7.8.HCDF 86.0 13C.2.3.7.8.HCDF 86.0 13C.2.3.7.8.HCDF 80.6 13C.2.3.7.8.HCDF 80.7 13C.1.2.3.4.67.8.HCDF 83.8 3C1.2.3.7.8.HCDF 83.7 13C.1.2.3.7.8.HCDF 83.7 13C.1.2.3.7.8.HCDF 86.7 13C.1.2.3.7.8.HCDD 86.7 13C.1.2.3.6.7.8.HCDD 80.3 13C.1.2.3.7.8.HCDF 86.7 13C.1.2.3.7.8.HCDF 87.7 13C.1.2.3.7.8.HCDF 80.3 13C.1.2.3.7.8.HCDF 80.3 13C.1.2.3.7.8.HCDF 87.7 13C.1.2.3.7.8.HCDF 87.7 13C			13C-1,2,3,7,8-PeCDD			(21%-227%)
12006427 MB for batch 21572 13C-2.3,7.8-TCDP 86.3 13C-1.2.3,7.8-PCDF 86.0 13C-1.2.3,7.8-PCDF 86.0 13C-1.2.3,7.8-PCDF 86.0 13C-1.2.3,7.8-PCDF 86.0 13C-1.2.3,7.8-PCDF 80.0 13C-1.2.3,7.8-PCDF 80.0 13C-1.2.3,6.7.8-HtCDF 80.0 13C-1.2.3,4.6,7.8-HtCDF 80.0 13C-1.2.3,4.6,7.8-HtCDF 80.0 13C-1.2.3,4.6,7.8-HtCDF 80.0 13C-1.2.3,4.6,7.8-HtCDF 80.0 13C-1.2.3,7.8-TCDD 88.7 13C-1.2.3,4.7.8-HtCDF 80.0 13C-1.2.3,4.7.8-HtCDF 80.0 13C-1.2.3,4.7.8-HtCDF 80.0 13C-1.2.3,4.7.8-HtCDD 80.0 13C-1.2.3,4.7.8-HtCDD 80.0 13C-1.2.3,4.7.8-HtCDD 80.0 13C-1.2.3,4.7.8-HtCDD 80.0 13C-1.2.3,4.7.8-HtCDD 80.0 13C-1.2.3,4.7.8-HtCDD 80.0 13C-1.2.3,4.7.8-HtCDF 87.0 13C-1.2.3,4.7.8-HtCDF 87.0 13C-1.2.3,4.7.8-HtCDF 87.0 13C-1.2.3,4.7.8-HtCDF 88.1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>(21%-193%)</td></td<>						(21%-193%)
13C-OCDD 81.7 13C-2,3,7,8-TCDF 86.0 13C-2,3,7,8-PCDF 86.0 13C-2,3,4,7,8-PCDF 86.0 13C-2,3,4,7,8-PCDF 86.0 13C-1,3,4,7,8-HxCDF 80.6 13C-1,2,3,7,8-HxCDF 80.6 13C-1,2,3,7,8-HxCDF 90.0 13C-1,2,3,7,8-HxCDF 90.0 13C-1,2,3,7,8-HxCDF 80.6 13C-1,2,3,7,8-HxCDF 84.4 13C-1,2,3,7,8-HxCDF 83.8 37C1-2,3,7,8-TCDD 83.7 12006429 LCSD for batch 21572 13C-2,3,7,8-TCDD 86.7 13C-1,2,3,7,8-HxCDD 86.9 13C-1,2,3,7,8-HxCDD 86.9 13C-1,2,3,4,7,8-HxCDD 80.3 13C-2,3,7,8-TCDD 88.8 13C-1,2,3,4,7,8-HxCDF 87.7 13C-3,4,7,8-HxCDF 87.7 13C-1,2,3,4,7,8-HxCDF 87.7 13C-1,2,3,4,7,8-HxCDF 88.8 13C-1,2,3,4,7,8-HxCDF 88.8 13C-2,3,7,8-TCDF 88.8 13C-1,2,3,4,7,8-HxCDF 84.2 13C-2,3,7,8-TCDF 88.8 13C-1,2,3,4,7,8-HxCDF 73.0 13C-1,2						(25%-163%)
13C2.37.8-PCDF 85.3 13C.1.2.37.8-PcDF 86.0 13C.1.2.3.7.8-PcDF 87.8 13C.1.2.3.4.7.8-HxDF 86.0 13C.1.2.3.4.7.8-HxDF 80.6 13C.2.3.4.7.8-HxDF 80.6 13C.2.3.4.7.8-HxDF 80.6 13C.1.2.3.7.8-HxDF 80.6 13C.1.2.3.4.7.8-HxDF 84.4 13C.1.2.3.4.7.8-HxDF 83.8 37C1-2.3.7.8-FCDD 88.7 13C.1.2.3.7.8-PcDD 88.7 13C.1.2.3.7.8-PcDD 86.7 13C.1.2.3.4.7.8-HxDD 79.3 13C.1.2.3.4.7.8-HxDD 89.9 13C.1.2.3.4.7.8-HxDD 80.3 13C.1.2.3.4.7.8-HxDD 80.3 13C.2.3.4.6.7.8-HxDD 80.3 13C.2.3.4.6.7.8-HxDD 80.3 13C.2.3.4.6.7.8-HxDF 87.7 13C.2.3.4.6.7.8-HxDF 87.7 13C.2.3.4.7.8-HxDF 87.7 13C.2.3.4.6.7.8-HxDF 84.2 13C.2.3.4.7.8-HxDF 84.2 13C.2.3.4.7.8-HxDF 84.2 13C.2.3.4.8-HxDF 84.5 13C.1.2.3.6.7.8-HxDF 84.5 13C.1.2.3.7.8-PcDF			13C-1,2,3,4,6,7,8-HpCDD			(22%-166%)
12C1.2.3.7.8-PCDF 86.0 13C-2.3.4.7.8-PCDF 87.8 13C-2.3.4.7.8-PCDF 86.0 13C-1.2.3.4.7.8-HxCDF 80.6 13C-1.2.3.4.7.8-HxCDF 80.6 13C-1.2.3.4.7.8-HxCDF 80.6 13C-1.2.3.4.7.8-HxCDF 83.8 13C-1.2.3.4.7.8-HxCDF 83.8 37C1-2.3.7.8-TCDD 83.7 12006429 LCSD for bach 21572 13C-2.3.7.8-TCDD 86.7 13C-1.2.3.6.7.8-HxCDD 86.7 13C-1.2.3.6.7.8-HxCDD 86.7 13C-1.2.3.6.7.8-HxCDD 86.9 13C-1.2.3.6.7.8-HxCDD 86.9 13C-1.2.3.6.7.8-HxCDD 80.3 13C-2.3.7.8-PCDF 88.8 13C-1.2.3.6.7.8-HxCDD 80.3 13C-2.3.7.8-PCDF 88.8 13C-1.2.3.6.7.8-HxCDF 88.8 13C-1.2.3.6.7.8-HxCDF 88.8 13C-1.2.3.6.7.8-HxCDF 88.8 13C-1.2.3.6.7.8-HxCDF 88.8 13C-1.2.3.6.7.8-HxCDF 88.8 13C-1.2.3.6.7.8-HxCDF 88.8 13C-1.2.3.6.7.8-HxCDF 88.4 13C-1.2.3.7.8-PCDF 88.8 13C-1.2.3.6.7.8-HxCDF 88.4 13C						(13%-199%)
13C-2,3,4,7,8-PcCDF 87.8 13C-1,2,3,4,7,8-PcCDF 86.0 13C-1,2,3,6,7,8-HxCDF 80.6 13C-1,2,3,6,7,8-HxCDF 80.6 13C-1,2,3,4,7,8-HyCDF 83.8 37C1-2,3,7,8-HyCDF 83.8 37C1-2,3,7,8-HyCDF 83.9 12006429 LCSD for batch 21572 13C-2,3,7,8-HyCDF 86.7 13C-1,2,3,4,7,8-HyCDF 86.7 13C-1,2,3,4,7,8-HyCDF 86.9 13C-1,2,3,4,7,8-HyCDF 86.7 13C-1,2,3,4,7,8-HyCDF 86.9 13C-1,2,3,4,7,8-HyCDF 86.7 13C-1,2,3,4,7,8-HyCDF 86.9 13C-1,2,3,4,7,8-HyCDF 86.9 13C-1,2,3,4,7,8-HyCDF 86.9 13C-1,2,3,4,7,8-HyCDF 86.7 13C-1,2,3,4,7,8-HyCDF 86.7 13C-1,2,3,4,7,8-HyCDF 86.7 13C-1,2,3,4,7,8-HyCDF 86.7 13C-1,2,3,4,7,8-HyCDF 87.7 13C-2,3,4,7,8-HyCDF 87.7 13C-1,2,3,4,7,8-HyCDF 87.8 13C-1,2,3,4,7,8-HyCDF 87.9 13C-1,2,3,4,7,8-HyCDF 87.9 13C-1,2,3,7,8-HyCDF 87.9 12006427 MB for batch 21572 13C-2,3,7,8-TCDD 87.9 13C-1,2,3,4,7,8-HyCDF 87.9			13C-2,3,7,8-TCDF			(22%-152%)
13C-1.2.3.4,7.8-HxCDF 86.0 13C-1.2.3.6,7.8-HxCDF 89.2 13C-1.2.3.6,7.8-HxCDF 80.6 13C-1.2.3.4,6.7.8-HxCDF 90.0 13C-1.2.3.4,7.8.9-HxCDF 84.4 13C-1.2.3.7,8-HxCDF 84.4 13C-1.2.3.7,8-HxCDF 83.9 12006429 LCSD for batch 21572 13C-2.3.7,8-TCDD 86.7 13C-1.2.3.4,7.8-HxCDD 86.7 13C-1.2.3.4,7.8-HxCDD 86.9 13C-1.2.3.4,7.8-HxCDD 86.9 13C-1.2.3.4,7.8-HxCDD 86.9 13C-1.2.3.4,7.8-HxCDD 80.3 13C-1.2.3.4,7.8-HxCDF 86.9 13C-1.2.3.4,7.8-HxCDF 80.3 13C-2.3.7.8-PCDF 87.7 13C-2.3.4,7.8-HxCDF 87.9 13C-1.2.3.4,7.8-HxCDF 88.8 13C-1.2.3.4,7.8-HxCDF 88.8 13C-1.2.3.4,7.8-HxCDF 88.8 13C-1.2.3.4,7.8-HxCDF 88.8 13C-1.2.3.4,7.8-HxCDF 88.9 13C-1.2.3.4,6.7.8-HyCDF 73.0 13C-1.2.3.7.8-PCDF 88.9 13C-1.2.3.4,6.7.8-HyCDF 73.0 13C-1.2.3.7.8-HCDF 88.9 13C-1.2.3.4,6.7.8-HyCDF 76.9 3						(21%-192%)
13C-1,2,3,6,7,8-HxCDF 89.2 13C-2,3,4,6,7,8-HxCDF 80.6 13C-1,2,3,7,8,9-HxCDF 80.6 13C-1,2,3,4,7,8,9-HpCDF 84.4 13C-1,2,3,4,7,8,9-HpCDF 83.8 37CI-2,3,7,8-TCDD 86.7 13C-1,2,3,4,7,8-HxCDD 86.7 13C-1,2,3,4,7,8-HxCDD 86.7 13C-1,2,3,4,7,8-HxCDD 86.7 13C-1,2,3,4,7,8-HxCDD 86.7 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-0CDD 80.3 13C-2,3,4,7,8-HxCDD 80.3 13C-2,3,4,7,8-HxCDF 87.7 13C-2,3,4,7,8-HxCDF 87.7 13C-2,3,4,7,8-HxCDF 87.7 13C-2,3,4,7,8-HxCDF 87.7 13C-1,2,3,4,7,8-HxCDF 87.7 13C-1,2,3,4,7,8-HxCDF 88.8 13C-1,2,3,4,7,8-HxCDF 88.8 13C-1,2,3,4,7,8-HxCDF 88.8 13C-1,2,3,4,7,8-HxCDF 84.5 13C-1,2,3,4,7,8-HxCDF 89.9 13C-1,2,3,4,7,8-HxCDF 89.9 13C-1,2,3,4,7,8-HxCDF 89.9 13C-1,2,3,4,7,8-HxCDD 89.9 <			13C-2,3,4,7,8-PeCDF			(13%-328%)
13C-2,3,4,6,7,8-HxCDF 80.6 13C-1,2,3,7,3,9-HxCDF 90.0 13C-1,2,3,4,7,8-MpCDF 83.4 13C-1,2,3,4,7,8-MpCDF 83.8 13C-1,2,3,7,8-TCDD 86.7 13C-1,2,3,7,8-TCDD 86.7 13C-1,2,3,7,8-TCDD 86.7 13C-1,2,3,7,8-TCDD 86.7 13C-1,2,3,7,8-TCDD 86.7 13C-1,2,3,7,8-HxCDD 86.9 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,7,8-HxCDD 80.3 13C-2,3,7,8-PCDF 87.7 13C-2,3,7,8-PCDF 87.7 13C-2,3,7,8-PCDF 87.7 13C-2,3,7,8-PCDF 87.7 13C-2,3,7,8-PCDF 88.8 13C-1,2,3,7,8-PCDF 88.8 13C-1,2,3,7,8-PCDF 88.8 13C-1,2,3,7,8-PCDF 88.4 13C-1,2,3,7,8-PCDF 84.2 13C-1,2,3,7,8-PCDF 84.2 13C-1,2,3,7,8-PCDF 84.5 13C-1,2,3,7,8-PCDF 84.5 13C-1,2,3,7,8-PCDF 84.5 13C-1,2,3,7,8-PCDF 84.5 13C-1,2,3,7,8-						(19%-202%)
13C-1.2.3,7,8.9-HxCDF 90.0 13C-1.2.3,4,67,8-HpCDF 84.4 13C-1.2.3,7,8.9-HpCDF 83.8 900 13C-1.2.3,7,8.9-HpCDF 83.8 12006429 LCSD for batch 21572 13C-2.3,7,8-PCDD 86.7 13C-1.2.3,4,7.8-HxCDD 86.7 13C-1.2.3,4,7.8-HxCDD 86.7 13C-1.2.3,4,7.8-HxCDD 80.3 13C-1.2.3,4,7.8-HxCDD 80.3 13C-1.2.3,4,7.8-HxCDD 80.3 13C-1.2.3,4,7.8-HxCDD 80.3 13C-1.2.3,4,7.8-HxCDD 80.3 13C-1.2.3,4,7.8-HxCDD 80.3 13C-1.2.3,4,7.8-HxCDF 81.8 13C-1.2.3,7.8-PeCDF 85.7 13C-1.2.3,4,7.8-HxCDF 88.8 13C-1.2.3,7.8-PeCDF 85.7 13C-1.2.3,7.8-PeCDF 84.2 13C-1.2.3,6,7.8-HxCDF 84.2 13C-1.2.3,4,6,7.8-HxCDF 84.5 13C-1.2.3,7.8-PeCDF 84.5 13C-1.2.3,4,7.8-HxCDF 84.5 13C-1.2.3,4,7.8-HxCDF 84.5 13C-1.2.3,4,6,7.8-HxCDF 89.9 13C-1.2.3,4,7.8-PeCDF 86.4 13C-1.2.3,4,7.8-HxCDD 89.9 <td></td> <td></td> <td></td> <td></td> <td></td> <td>(21%-159%)</td>						(21%-159%)
13C-1.2.3.4.6.7.8-HpCDF 84.4 13C-1.2.3.4.7.8.9-HpCDF 83.8 12006429 LCSD for batch 21572 13C-2.3.7.8-TCDD 86.7 13C-1.2.3.7.8-PCDD 86.7 13C-1.2.3.7.8-HxCDD 86.7 13C-1.2.3.7.8-HxCDD 86.9 13C-1.2.3.7.8-HxCDD 80.3 13C-1.2.3.4.6.7.8-HxCDD 80.3 13C-1.2.3.7.8-HxCDD 80.3 13C-2.3.7.8-FCDF 85.7 13C-2.3.7.8-HxCDF 88.7 13C-2.3.7.8-FCDF 85.7 13C-2.3.7.8-HxCDF 88.8 13C-2.3.7.8-FCDF 85.7 13C-2.3.7.8-HxCDF 88.8 13C-2.3.7.8-FCDF 85.7 13C-2.3.7.8-HxCDF 79.8 13C-1.2.3.4.7.8-HxCDF 79.8 13C-1.2.3.4.7.8-HxCDF 79.8 13C-1.2.3.4.7.8-HxCDF 79.8 13C-1.2.3.4.7.8-HxCDF 84.5 13C-1.2.3.4.7.8-HxCDF 79.9 77.4 13C-1.2.3.7.8-PCDF 84.5 13C-1.2.3.7.8-PCDD 89.2 13C-1.2.3.4.7.8-HxCDF 89.2 13C-1.2.3.4.7.8-HxCDF 89.2 12006427 MB for batch 21572 13C-2.3.7.8-PCDD 89.2 13C-1.2.3.4.7.8-HxC						(22%-176%)
13C-1,2,3,4,7,8,9-HpCDF 83.8 37Cl-2,3,7,8-TCDD 88.7 12006429 LCSD for batch 21572 13C-2,3,7,8-TCDD 86.7 13C-1,2,3,7,8-HCDD 86.9 13C-1,2,3,7,8-HCDD 86.9 13C-1,2,3,7,8-HCDD 80.3 13C-1,2,3,7,8-HCDD 80.3 13C-2,3,7,8-HCDD 80.3 13C-2,3,7,8-HCDD 80.3 13C-2,3,7,8-TCDF 85.7 13C-2,3,7,8-TCDF 85.7 13C-2,3,7,8-HCDF 85.7 13C-2,3,7,8-HCDF 84.2 13C-2,3,7,8-HCDF 84.2 13C-1,2,3,7,8-HCDF 73.0 13C-1,2,3,7,8-HCDF 74. 13C-1,2,3,7,8-HCDF 74. 13C-1,2,3,7,8-HCDF 74. 13C-1,2,3,7,8-HCDF 76.9 3TC-1,2,3,7,8-HCDF 76.9 3TC-1,2,3,7,8-HCDD 88.4 13C-1,2,3,7,8-HCDD 89.2 13C-1,2,3,7,8-HCDD 89.3 13C-1,2,3,7,8-HCDD 89.3 13C-1,2,3,7,8-HCDD 80.3 13C-1,2,3,7,8-HCDD 89.9						(17%-205%)
12006429 LCSD for batch 21572 13C-2,3,7,8-TCDD 88.7 13C-1,2,3,7,8-PeCDD 86.7 13C-1,2,3,7,8-PeCDD 86.7 13C-1,2,3,4,7,8-HxCDD 90.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,7,8-PeCDF 80.3 13C-0.20 80.3 13C-1,2,3,7,8-PeCDF 85.7 13C-1,2,3,7,8-PeCDF 85.7 13C-2,2,3,7,8-PCDF 87.7 13C-2,3,7,8-PeCDF 88.8 13C-2,2,3,7,8-PeCDF 88.8 13C-1,2,3,7,8-PeCDF 88.8 13C-1,2,3,7,8-PeCDF 88.8 13C-1,2,3,7,8-PeCDF 84.2 13C-1,2,3,7,8-PeCDF 73.0 13C-1,2,3,7,8-PeCDF 73.0 13C-1,2,3,4,7,8-HxCDF 84.5 13C-1,2,3,7,8-PeCDF 74.1 13C-1,2,3,4,7,8-HxCDF 76.9 37CL-2,3,7,8-PeCDF 76.9 12006427 MB for batch 21572 13C-2,3,7,8-TCDD 88.4 13C-1,2,3,4,7,8-HxCDF 80.3 13C-1,2,3,7,8-PeCDF 76.9 13C-1,2,3,7,8-PeCDD 89.2 13C-1,2,3,7,8-PeCDF 87.8 13C-1,2,3,7,8-PeCDD 88.4 13C-1,2,3,7,8-PeCDF 86.4			-			(21%-158%)
12006429 LCSD for batch 21572 13C-2,3,7,8-TCDD 88.7 13C-1,2,3,7,8-PeCDD 86.7 13C-1,2,3,6,7,8-HxCDD 86.9 13C-1,2,3,6,7,8-HxCDD 80.3 13C-1,2,3,6,7,8-HxCDD 80.3 13C-1,2,3,6,7,8-HxCDD 80.3 13C-2,3,7,8-PeCDF 85.7 13C-2,2,3,7,8-PeCDF 87.7 13C-2,2,3,7,8-PeCDF 88.8 13C-1,2,3,6,7,8-HxCDF 84.2 13C-1,2,3,6,7,8-HxCDF 84.2 13C-1,2,3,6,7,8-HxCDF 84.2 13C-1,2,3,6,7,8-HxCDF 84.2 13C-1,2,3,4,7,8,9-HxCDF 74.4 13C-1,2,3,4,7,8,9-HxCDF 76.9 37C1-2,3,7,8,7-ECDD 87.9 12006427 MB for batch 21572 13C-2,3,7,8-TCDD 88.4 13C-1,2,3,6,7,8-HxCDF 76.9 37C1-2,3,7,8-PeCDD 89.9 12006427 MB for batch 21572 13C-2,3,7,8-PeCDD 89.2 12006427 MB for batch 21572 13C-2,3,7,8-PeCDD 89.9 13C-1,2,3,6,7,8-HxCDF 76.9 37C1-2,3,7,8-PeCDD 89.9 13C-1,2,3,6,7,8-HxCDF 86.1 33.13C-1,2,3,7,8-PeCDF 86.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td>(20%-186%)</td>						(20%-186%)
13C-1,2,3,7,8-PeCDD 86.7 13C-1,2,3,4,7,8-HxCDD 79.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-2,3,7,8-PeCDF 85.7 13C-1,2,3,4,7,8-HxCDF 85.7 13C-2,3,4,7,8-HxCDF 88.8 13C-1,2,3,7,8-PeCDF 88.8 13C-1,2,3,7,8-HxCDF 84.2 13C-1,2,3,7,8-HxCDF 84.2 13C-1,2,3,7,8-HxCDF 84.2 13C-1,2,3,7,8-PeCDF 84.5 13C-1,2,3,7,8-PeCDF 88.4 13C-1,2,3,4,6,7,8-HxCDF 89.9 13C-1,2,3,4,7,8-PeCDF 88.4 13C-1,2,3,4,7,8-PeCDF 89.9 13C-1,2,3,4,7,8-PeCDF 89.9 13C-1,2,3,4,7,8-HxCDD 89.9 13C-1,2,3,4,7,8-HxCDD 89.9 13C-1,2,3,4,7,8-HxCDF 86.1 13C-2,3,7,8-TCDD 89.9 <t< td=""><td></td><td></td><td>37C1-2,3,7,8-TCDD</td><td></td><td>83.9</td><td>(31%-191%)</td></t<>			37C1-2,3,7,8-TCDD		83.9	(31%-191%)
13C-1,2,3,4,7,8-HxCDD 79.3 13C-1,2,3,4,7,8-HxCDD 86.9 13C-1,2,3,4,7,8-HxCDD 80.3 13C-0CDD 80.3 13C-2,3,7,8-FCDF 85.7 13C-1,2,3,4,7,8-HxCDF 87.7 13C-2,3,7,8-PcDF 87.7 13C-2,3,4,7,8-HxCDF 79.8 13C-1,2,3,4,7,8-HxCDF 79.8 13C-1,2,3,4,7,8-HxCDF 79.8 13C-1,2,3,4,7,8-HxCDF 84.2 13C-1,2,3,4,7,8-HxCDF 73.0 13C-1,2,3,4,7,8-HxCDF 74.4 13C-1,2,3,4,7,8-HxCDF 76.9 37C-2,3,7,8-TCDD 88.4 13C-1,2,3,4,7,8-HxCDF 76.9 37C-2,3,7,8-TCDD 89.2 13C-1,2,3,4,7,8-HxCDF 76.9 37C-2,3,7,8-TCDD 89.2 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDF 86.4 13C-2,3,4,7,8-HxCDF 86.4 13C-2	2006429	LCSD for batch 21572	13C-2,3,7,8-TCDD		88.7	(20%-175%)
13C-1,2,3,6,7,8-HxCDD 86.9 13C-1,2,3,4,6,7,8-HpCDD 80.3 13C-0,2,0,0D 80.3 13C-0,2,3,7,8-HpCDD 80.3 13C-2,3,7,8-PCDF 85.7 13C-1,2,3,7,8-PeCDF 87.7 13C-2,3,4,7,8-PeCDF 88.8 13C-1,2,3,4,7,8-PeCDF 84.2 13C-1,2,3,6,7,8-HxCDF 84.2 13C-1,2,3,6,7,8-HxCDF 84.5 13C-1,2,3,4,6,7,8-HxCDF 76.9 37C1-2,3,4,7,8-PACDF 76.9 37C1-2,3,4,7,8-HpCDF 76.9 37C1-2,3,4,7,8-PACDD 89.2 13C-1,2,3,7,8-PACDD 89.2 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 89.9 13C-1,2,3,4,7,8-HxCDD 89.9 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-2,3,4,7,8-HxCDD 80.3 <			13C-1,2,3,7,8-PeCDD		86.7	(21%-227%)
13C-1,2,3,4,6,7,8-HpCDD 80.3 13C-0CDD 80.3 13C-0CDD 80.3 13C-2,3,7,8-PCDF 85.7 13C-1,2,3,7,8-PeCDF 88.8 13C-1,2,3,4,7,8-PeCDF 88.8 13C-1,2,3,4,7,8-HxCDF 79.8 13C-1,2,3,4,7,8-HxCDF 78.0 13C-1,2,3,4,7,8-HxCDF 74.1 13C-1,2,3,4,7,8-HxCDF 74.1 13C-1,2,3,4,7,8-HxCDF 76.9 37C1-2,3,7,8-TCDD 88.4 13C-1,2,3,4,7,8-HxCDF 76.9 37C1-2,3,7,8-TCDD 88.4 13C-1,2,3,4,7,8-HxCDF 76.9 37C1-2,3,7,8-TCDD 88.4 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-2,3,4,6,7,8-HxCDD 80.3 13C-2,3,4,6,7,8-HxCDD 80.3 13C-2,3,4,6,7,8-HxCDD 80.3 13C-2,3,4,6,7,8-HxCDF 86.1 13C-2,3,4,6,7,8-HxCDF 86.1 13C-2,3,4,6,7,8-HxCDF 86.1 13C-2,			13C-1,2,3,4,7,8-HxCDD		79.3	(21%-193%)
13C-OCDD 80.3 13C-2,3,7,8-TCDF 85.7 13C-2,3,7,8-TCDF 85.7 13C-1,2,3,7,8-PCDF 87.7 13C-2,3,4,7,8-PeCDF 88.8 13C-1,2,3,4,7,8-HxCDF 79.8 13C-2,3,4,7,8-HxCDF 84.2 13C-1,2,3,4,7,8-HxCDF 84.2 13C-1,2,3,4,7,8-HxCDF 84.5 13C-1,2,3,4,6,7,8-HxCDF 74.4 13C-1,2,3,4,7,8-HxCDF 76.9 37C1-2,3,7,8-TCDD 88.4 13C-1,2,3,7,8-PCDD 89.2 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-PCDD 80.3 13C-1,2,3,4,7,8-PCDD 88.4 13C-1,2,3,4,7,8-PCDD 80.3 13C-1,2,3,4,7,8-PCDD 80.3 13C-1,2,3,4,7,8-PCDD 80.3 13C-1,2,3,4,7,8-PCDD 80.3 13C-2,3,7,8-PCDD 86.4 13C-1,2,3,4,6,7,8-HxCDF 86.1 13C-2,3,4,6,7,8-HxCDF 86.1 13C-2,3,4,7,8-PcCDF 87.8 13C-1,2,3,4,7,8-HxCDF 86.1 13C-1,2,3,4,7,8-HxCDF 88.0 13C-1,2,3			13C-1,2,3,6,7,8-HxCDD		86.9	(25%-163%)
13C-2,3,7,8-TCDF 85.7 13C-1,2,3,7,8-PeCDF 87.7 13C-2,3,4,7,8-PeCDF 88.8 13C-1,2,3,4,7,8-PeCDF 88.8 13C-1,2,3,4,7,8-HxCDF 79.8 13C-2,3,4,7,8-HxCDF 84.2 13C-1,2,3,4,6,7,8-HxCDF 84.5 13C-1,2,3,4,6,7,8-HxCDF 77.4 13C-1,2,3,4,6,7,8-HxCDF 76.9 37C-1,2,3,4,6,7,8-HxCDF 76.9 37C-1,2,3,4,7,8,9-HpCDF 76.9 37C-1,2,3,4,7,8-PeCDD 88.4 13C-1,2,3,4,6,7,8-HxCDD 89.2 13C-1,2,3,4,6,7,8-HxCDD 89.2 13C-1,2,3,4,6,7,8-HxCDD 89.2 13C-1,2,3,4,6,7,8-HxCDD 89.9 13C-1,2,3,4,6,7,8-HxCDD 89.9 13C-1,2,3,4,6,7,8-HxCDD 89.9 13C-1,2,3,4,6,7,8-HxCDD 89.9 13C-2,3,4,6,7,8-HxCDD 89.9 13C-2,3,4,6,7,8-HxCDF 86.4 13C-2,3,4,7,8-PeCDF 86.4 13C-2,3,4,7,8-HxCDF 86.1 13C-2,3,4,7,8-HxCDF 86.1 13C-2,3,4,7,8-HxCDF 86.1 13C-2,3,4,7,8-HxCDF 86.1 13C-2,3,4,7,8-HxCDF 8			13C-1,2,3,4,6,7,8-HpCDD		80.3	(22%-166%)
13C-1,2,3,7,8-PeCDF 87.7 13C-2,3,4,7,8-PeCDF 88.8 13C-1,2,3,4,7,8-HxCDF 79.8 13C-1,2,3,4,7,8-HxCDF 73.0 13C-1,2,3,4,7,8-HxCDF 73.0 13C-1,2,3,4,6,7,8-HxCDF 73.0 13C-1,2,3,4,6,7,8-HxCDF 73.0 13C-1,2,3,4,6,7,8-HxCDF 74.1 13C-1,2,3,4,7,8,9-HpCDF 76.9 37C1-2,3,7,8-TCDD 70.9 37C1-2,3,7,8-TCDD 88.4 13C-1,2,3,4,7,8-PeCDD 89.2 13C-1,2,3,4,7,8-PeCDD 89.2 13C-1,2,3,4,7,8-PeCDD 89.2 13C-1,2,3,4,7,8-PeCDD 89.2 13C-1,2,3,4,7,8-PeCDD 80.3 13C-1,2,3,4,7,8-PeCDD 80.3 13C-1,2,3,4,6,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-PeCDF 86.4 13C-2,3,4,6,7,8-HxCDD 80.3 13C-2,3,4,6,7,8-HxCDF 86.4 13C-1,2,3,4,7,8-PeCDF 86.4 13C-1,2,3,4,7,8-PeCDF 86.4 13C-1,2,3,4,7,8-PeCDF 86.4 13C-1,2,3,4,7,8-PeCDF 86.4 13C-1,2,3,4,7,8-PeCDF 86.4 13C-1,2,3,4,7,8-PeCDF 86.4			13C-OCDD		80.3	(13%-199%)
13C-2,3,4,7,8-PeCDF 88.8 13C-1,2,3,4,7,8-HxCDF 79.8 13C-1,2,3,6,7,8-HxCDF 84.2 13C-1,2,3,6,7,8-HxCDF 73.0 13C-1,2,3,6,7,8-HxCDF 73.0 13C-1,2,3,4,6,7,8-HxCDF 73.0 13C-1,2,3,4,6,7,8-HxCDF 74.1 13C-1,2,3,4,7,8-PhcDF 76.9 37C1-2,3,7,8-TCDD 87.9 V 12006427 MB for batch 21572 13C-2,3,7,8-TCDD 88.4 13C-1,2,3,4,7,8-HxCDD 89.2 13C-1,2,3,4,7,8-HxCDD 89.2 13C-1,2,3,4,7,8-HxCDD 89.9 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 89.9 13C-1,2,3,4,7,8-HxCDD 89.9 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDF 86.4 13C-1,2,3,7,8-PCDF 86.4 13C-1,2,3,7,8-PCDF 86.1 13C-2,3,4,7,8-HxCDF 86.1 13C-1,2,3,4,7,8-HxCDF 86.1 13C-1,2,3,4,7,8-HxCDF 86.1 13C-1,2,3,4,7,8-HxCDF 86.1 13C-1,2,3,4,7,8-HxCDF 87.8 13C-1,2,3,4,7,8-HxCDF 86.1 13C-1,2,3,4,7,8-HxCDF 87.8 13C-1,2,3,4,			13C-2,3,7,8-TCDF		85.7	(22%-152%)
13C-1,2,3,4,7,8-HxCDF 79.8 13C-1,2,3,6,7,8-HxCDF 84.2 13C-1,2,3,4,6,7,8-HxCDF 73.0 13C-1,2,3,7,8,9-HxCDF 84.5 13C-1,2,3,7,8,9-HxCDF 77.4 13C-1,2,3,4,6,7,8-HpCDF 77.4 13C-1,2,3,7,8-PCDF 76.9 37.0 37.8-TCDD 88.4 13C-1,2,3,7,8-PeCDD 89.2 13C-1,2,3,4,7,8-HxCDF 80.3 13C-1,2,3,7,8-PeCDD 89.2 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDF 86.4 13C-1,2,3,4,7,8-HxCDF 86.4 13C-1,2,3,4,7,8-HxCDF 86.1 13C-1,2,3,4,7,8-HxCDF 88.0 13C-1,2,3,4,7,8-HxCDF 88.0 13C-1,2,3,4,7,8-HxCDF 88.0 13C-1,2,3,4,6,7,8-HxCDF 88.0 1			13C-1,2,3,7,8-PeCDF		87.7	(21%-192%)
13C-1,2,3,6,7,8-HxCDF 84.2 13C-2,3,4,6,7,8-HxCDF 73.0 13C-1,2,3,7,8,9-HxCDF 84.5 13C-1,2,3,4,6,7,8-HpCDF 77.4 13C-1,2,3,4,7,8-PhpCDF 76.9 37C1-2,3,7,8-TCDD 88.4 13C-1,2,3,4,7,8-PhpCDF 76.9 37C1-2,3,7,8-TCDD 89.2 13C-1,2,3,4,7,8-PeCDD 89.2 13C-1,2,3,4,7,8-HxCDD 89.2 13C-1,2,3,4,7,8-HxCDD 89.9 13C-1,2,3,4,6,7,8-HpCDD 82.9 13C-1,2,3,4,6,7,8-HpCDD 82.9 13C-1,2,3,7,8-PeCDF 86.4 13C-1,2,3,4,7,8-HxCDP 80.3 13C-1,2,3,4,6,7,8-HpCDD 82.9 13C-1,2,3,4,7,8-HxCDF 86.4 13C-1,2,3,4,7,8-PeCDF 86.4 13C-1,2,3,4,7,8-PeCDF 86.1 13C-2,3,4,7,8-PeCDF 87.8 13C-1,2,3,4,7,8-HxCDF 84.1 13C-1,2,3,4,7,8-HxCDF 88.0 13C-1,2,3,4,7,8-HxCDF 88.0 13C-2,3,4,6,7,8-HxCDF 88.0 13C-1,2,3,7,8,9-HxCDF 85.9			13C-2,3,4,7,8-PeCDF		88.8	(13%-328%)
13C-2,3,4,6,7,8-HxCDF 73.0 13C-1,2,3,7,8,9-HxCDF 84.5 13C-1,2,3,4,6,7,8-HpCDF 77.4 13C-1,2,3,4,6,7,8-HpCDF 76.9 37C1-2,3,7,8-TCDD 87.9 V 12006427 MB for batch 21572 13C-2,3,7,8-TCDD 88.4 13C-1,2,3,7,8-PeCDD 89.2 13C-1,2,3,4,6,7,8-HxCDD 80.3 13C-1,2,3,4,6,7,8-HxCDD 80.3 13C-1,2,3,4,6,7,8-HxCDD 89.9 13C-1,2,3,4,6,7,8-HxCDD 82.9 13C-2,3,7,8-FCDF 86.4 13C-2,3,7,8-PCDF 78.0 13C-2,3,7,8-PCDF 86.1 13C-2,3,4,7,8-PeCDF 86.1 13C-2,3,4,7,8-PeCDF 86.1 13C-1,2,3,4,7,8-PeCDF 86.1 13C-1,2,3,4,7,8-PeCDF 86.1 13C-1,2,3,4,7,8-PeCDF 86.1 13C-1,2,3,4,7,8-PeCDF 87.8 13C-1,2,3,4,7,8-PacDF 88.0 13C-1,2,3,4,7,8-PacDF 88.0 13C-1,2,3,4,6,7,8-HxCDF 88.0 13C-2,3,4,6,7,8-HxCDF 88.0 13C-1,2,3,4,6,7,8-HxCDF 85.9 </td <td></td> <td></td> <td>13C-1,2,3,4,7,8-HxCDF</td> <td></td> <td>79.8</td> <td>(19%-202%)</td>			13C-1,2,3,4,7,8-HxCDF		79.8	(19%-202%)
13C-1,2,3,7,8,9-HxCDF 84.5 13C-1,2,3,4,6,7,8-HpCDF 77.4 13C-1,2,3,4,7,8,9-HpCDF 76.9 37CI-2,3,7,8-TCDD 87.9 I I IOO6427 MB for batch 21572 13C-2,3,7,8-TCDD I IOO6427 MB for batch 21572 13C-2,3,7,8-TCDD ISC-2,3,7,8-TCDD ISC-1,2,3,4,6,7,8-HxCDD ISC-1,2,3,4,6,7,8-HxCDD ISC-1,2,3,4,6,7,8-HxCDD ISC-2,3,7,8-TCDD ISC-2,3,7,8-TCDD ISC-1,2,3,4,6,7,8-HxCDD ISC-2,3,7,8-TCDD ISC-2,3,7,8-TCDD ISC-2,3,7,8-TCDD ISC-2,3,7,8-TCDF ISC-2,3,7,8-TCDF ISC-2,3,4,7,8-HxCDF ISC-2,3,4,7,8-HxCDF ISC-2,3,4,7,8-HxCDF ISC-2,3,4,7,8-HxCDF ISC-2,3,4,6,7,8-HxCDF ISC-2,3,4,6,7,8-HxCDF ISC-2,3,4,6,7,8-HxCDF ISC-2,3,4,6,7,8-HxCDF <td></td> <td></td> <td>13C-1,2,3,6,7,8-HxCDF</td> <td></td> <td>84.2</td> <td>(21%-159%)</td>			13C-1,2,3,6,7,8-HxCDF		84.2	(21%-159%)
13C-1,2,3,7,8,9-HxCDF 84.5 13C-1,2,3,4,6,7,8-HpCDF 77.4 13C-1,2,3,4,7,8,9-HpCDF 76.9 37CI-2,3,7,8-TCDD 87.9 I IO06427 MB for batch 21572 13C-2,3,7,8-TCDD 88.4 13C-1,2,3,7,8-PeCDD 89.2 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,6,7,8-HxCDD 89.9 13C-1,2,3,4,6,7,8-HxCDD 82.9 13C-2,3,7,8-TCDF 86.4 13C-2,3,7,8-TCDF 86.4 13C-2,3,7,8-TCDF 86.4 13C-2,3,7,8-TCDF 86.4 13C-2,3,4,7,8-HxCDF 86.1 13C-2,3,4,7,8-HxCDF 87.8 13C-1,2,3,4,7,8-HxCDF 86.1 13C-2,3,4,7,8-HxCDF 87.8 13C-1,2,3,4,7,8-HxCDF 86.1 13C-2,3,4,7,8-HxCDF 88.0 13C-1,2,3,4,7,8-HxCDF 88.0 13C-1,2,3,4,6,7,8-HxCDF 88.0 13C-2,3,4,6,7,8-HxCDF 88.0 13C-2,3,4,6,7,8-HxCDF 85.9			13C-2,3,4,6,7,8-HxCDF		73.0	(22%-176%)
13C-1,2,3,4,6,7,8-HpCDF 77.4 13C-1,2,3,4,7,8,9-HpCDF 76.9 37C1-2,3,7,8-TCDD 87.9 12006427 MB for batch 21572 13C-2,3,7,8-TCDD 88.4 13C-1,2,3,7,8-PeCDD 89.2 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,4,6,7,8-HpCDD 89.9 13C-1,2,3,4,6,7,8-HpCDD 82.9 13C-1,2,3,4,6,7,8-HpCDD 82.9 13C-1,2,3,4,6,7,8-HpCDD 86.4 13C-2,3,7,8-PeCDF 86.4 13C-2,3,7,8-PeCDF 86.4 13C-1,2,3,4,7,8-PeCDF 86.1 13C-1,2,3,4,7,8-PeCDF 86.1 13C-1,2,3,4,7,8-PeCDF 86.1 13C-1,2,3,4,7,8-PeCDF 86.1 13C-1,2,3,4,7,8-PeCDF 86.1 13C-1,2,3,4,7,8-PeCDF 88.0 13C-1,2,3,4,7,8-PacDF 88.0 13C-1,2,3,4,7,8-PacDF 88.0 13C-1,2,3,4,6,7,8-HxCDF 88.0 13C-1,2,3,4,6,7,8-HxCDF 88.0 13C-1,2,3,7,8,9-HxCDF 85.9			13C-1,2,3,7,8,9-HxCDF			(17%-205%)
13C-1,2,3,4,7,8,9-HpCDF 76.9 37Cl-2,3,7,8-TCDD 87.9 12006427 MB for batch 21572 13C-2,3,7,8-TCDD 88.4 13C-1,2,3,7,8-PeCDD 89.2 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,6,7,8-HxCDD 80.3 13C-1,2,3,4,6,7,8-HpCDD 80.9 13C-1,2,3,4,6,7,8-HpCDD 82.9 13C-1,2,3,4,6,7,8-HpCDD 82.9 13C-0CDD 78.0 13C-2,3,7,8-TCDF 86.4 13C-2,3,4,7,8-PeCDF 86.1 13C-2,3,4,7,8-PeCDF 86.1 13C-2,3,4,7,8-HxCDF 84.1 13C-1,2,3,6,7,8-HxCDF 88.0 13C-1,2,3,4,6,7,8-HxCDF 88.0 13C-1,2,3,4,6,7,8-HxCDF 85.9					77.4	(21%-158%)
37Cl-2,3,7,8-TCDD 87.9 12006427 MB for batch 21572 13C-2,3,7,8-TCDD 88.4 13C-1,2,3,7,8-PeCDD 89.2 13C-1,2,3,7,8-HxCDD 80.3 13C-1,2,3,6,7,8-HxCDD 89.9 13C-1,2,3,6,7,8-HxCDD 82.9 13C-0CDD 78.0 13C-2,3,7,8-PeCDF 86.4 13C-2,3,7,8-PeCDF 86.1 13C-2,3,4,7,8-PeCDF 86.1 13C-2,3,4,7,8-PeCDF 87.8 13C-1,2,3,4,7,8-HxCDF 84.1 13C-2,3,4,7,8-HxCDF 88.0 13C-1,2,3,4,7,8-HxCDF 88.0 13C-1,2,3,4,6,7,8-HxCDF 88.0 13C-1,2,3,4,7,8-HxCDF 88.0 13C-1,2,3,4,6,7,8-HxCDF 85.9			-		76.9	(20%-186%)
13C-1,2,3,7,8-PeCDD 89.2 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,6,7,8-HxCDD 89.9 13C-1,2,3,4,6,7,8-HpCDD 82.9 13C-0CDD 78.0 13C-1,2,3,7,8-PeCDF 86.4 13C-1,2,3,4,7,8-PeCDF 86.1 13C-2,3,4,7,8-PeCDF 87.8 13C-1,2,3,4,7,8-PeCDF 84.1 13C-1,2,3,4,7,8-HxCDF 88.0 13C-1,2,3,6,7,8-HxCDF 88.0 13C-2,3,4,6,7,8-HxCDF 85.9			*			(31%-191%)
13C-1,2,3,7,8-PeCDD 89.2 13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,6,7,8-HxCDD 89.9 13C-1,2,3,4,6,7,8-HpCDD 82.9 13C-0CDD 78.0 13C-1,2,3,7,8-PeCDF 86.4 13C-1,2,3,4,7,8-PeCDF 86.1 13C-2,3,4,7,8-PeCDF 87.8 13C-1,2,3,4,7,8-PeCDF 84.1 13C-1,2,3,4,7,8-HxCDF 88.0 13C-1,2,3,6,7,8-HxCDF 88.0 13C-2,3,4,6,7,8-HxCDF 85.9	2006427	MB for batch 21572	13C-2 3 7 8-TCDD		88.4	(25%-164%)
13C-1,2,3,4,7,8-HxCDD 80.3 13C-1,2,3,6,7,8-HxCDD 89.9 13C-1,2,3,4,6,7,8-HpCDD 82.9 13C-0CDD 78.0 13C-2,3,7,8-TCDF 86.4 13C-1,2,3,4,7,8-PeCDF 86.1 13C-2,3,4,7,8-PeCDF 87.8 13C-1,2,3,4,7,8-PeCDF 84.1 13C-1,2,3,4,7,8-HxCDF 88.0 13C-1,2,3,6,7,8-HxCDF 88.0 13C-2,3,4,6,7,8-HxCDF 85.9	2000427	NIB for batch 21572				(25%-181%)
13C-1,2,3,6,7,8-HxCDD 89.9 13C-1,2,3,4,6,7,8-HpCDD 82.9 13C-0CDD 78.0 13C-2,3,7,8-TCDF 86.4 13C-1,2,3,7,8-PeCDF 86.1 13C-2,3,4,7,8-PeCDF 87.8 13C-1,2,3,4,7,8-PeCDF 84.1 13C-1,2,3,4,7,8-HxCDF 88.0 13C-2,3,4,6,7,8-HxCDF 88.0 13C-2,3,4,6,7,8-HxCDF 85.9						(32%-141%)
13C-1,2,3,4,6,7,8-HpCDD 82.9 13C-OCDD 78.0 13C-2,3,7,8-TCDF 86.4 13C-1,2,3,7,8-PeCDF 86.1 13C-2,3,4,7,8-PeCDF 87.8 13C-1,2,3,4,7,8-PeCDF 87.8 13C-1,2,3,4,7,8-HxCDF 84.1 13C-1,2,3,6,7,8-HxCDF 88.0 13C-2,3,4,6,7,8-HxCDF 77.6 13C-1,2,3,7,8,9-HxCDF 85.9						(28%-130%)
13C-OCDD 78.0 13C-2,3,7,8-TCDF 86.4 13C-1,2,3,7,8-PeCDF 86.1 13C-2,3,4,7,8-PeCDF 87.8 13C-1,2,3,4,7,8-PeCDF 84.1 13C-1,2,3,4,7,8-HxCDF 88.0 13C-2,3,4,6,7,8-HxCDF 88.0 13C-2,3,4,6,7,8-HxCDF 77.6 13C-1,2,3,7,8,9-HxCDF 85.9						(23%-140%)
13C-2,3,7,8-TCDF 86.4 13C-1,2,3,7,8-PeCDF 86.1 13C-2,3,4,7,8-PeCDF 87.8 13C-1,2,3,4,7,8-PeCDF 84.1 13C-1,2,3,4,7,8-HxCDF 88.0 13C-2,3,4,6,7,8-HxCDF 77.6 13C-1,2,3,7,8,9-HxCDF 85.9						(17%-157%)
13C-1,2,3,7,8-PeCDF 86.1 13C-2,3,4,7,8-PeCDF 87.8 13C-1,2,3,4,7,8-HxCDF 84.1 13C-1,2,3,6,7,8-HxCDF 88.0 13C-2,3,4,6,7,8-HxCDF 77.6 13C-1,2,3,7,8,9-HxCDF 85.9						(24%-169%)
13C-2,3,4,7,8-PeCDF87.813C-1,2,3,4,7,8-HxCDF84.113C-1,2,3,6,7,8-HxCDF88.013C-2,3,4,6,7,8-HxCDF77.613C-1,2,3,7,8,9-HxCDF85.9						(24%-185%)
13C-1,2,3,4,7,8-HxCDF84.113C-1,2,3,6,7,8-HxCDF88.013C-2,3,4,6,7,8-HxCDF77.613C-1,2,3,7,8,9-HxCDF85.9						(21%-178%)
13C-1,2,3,6,7,8-HxCDF88.013C-2,3,4,6,7,8-HxCDF77.613C-1,2,3,7,8,9-HxCDF85.9						(26%-152%)
13C-2,3,4,6,7,8-HxCDF 77.6 13C-1,2,3,7,8,9-HxCDF 85.9						(26%-123%)
13C-1,2,3,7,8,9-HxCDF 85.9						(28%-136%)
						(28%-130%) (29%-147%)
13C-1,2,3,4,6,7,8-HpCDF 77.6						(29%-147%) (28%-143%)
			*			(26% - 138%) (35% - 197%)
37CI-2,3,7,8-TCDD 89.3			37CI-2,3,7,6-ICDD		07.3	(35%-197%)
3782001 SFPR-001 13C-2,3,7,8-TCDD 66.5	782001	SFPR-001	13C-2,3,7,8-TCDD		66.5	(25%-164%)

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: 3782

Matrix Type: SOLID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
3782001	SFPR-001	13C-1,2,3,7,8-PeCDD		64.1	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		62.3	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		63.6	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		62.2	(23%-140%)
		13C-OCDD		68.6	(17%-157%)
		13C-2,3,7,8-TCDF		63.3	(24%-169%)
		13C-1,2,3,7,8-PeCDF		65.4	(24%-185%)
		13C-2,3,4,7,8-PeCDF		66.6	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		62.8	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		62.6	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		56.6	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		68.3	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		66.2	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		58.1	(26%-138%)
		37Cl-2,3,7,8-TCDD		83.7	(35%-197%)
2006430	SFPR-001(3782001MS)	13C-2,3,7,8-TCDD		92.1	(25%-164%)
		13C-1,2,3,7,8-PeCDD		90.7	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		89.6	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		88.0	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		86.7	(23%-140%)
		13C-OCDD		101	(17%-157%)
		13C-2,3,7,8-TCDF		88.3	(24%-169%)
		13C-1,2,3,7,8-PeCDF		92.9	(24%-185%)
		13C-2,3,4,7,8-PeCDF		92.8	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		87.3	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		87.5	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		79.9	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		96.4	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		93.2	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		84.3	(26%-138%)
		37Cl-2,3,7,8-TCDD		92.0	(35%-197%)
2006431	SFPR-001(3782001MSD)	13C-2,3,7,8-TCDD		82.9	(25%-164%)
		13C-1,2,3,7,8-PeCDD		81.8	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		81.2	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		84.0	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		82.7	(23%-140%)
		13C-OCDD		96.4	(17%-157%)
		13C-2,3,7,8-TCDF		80.5	(24%-169%)
		13C-1,2,3,7,8-PeCDF		83.3	(24%-185%)
		13C-2,3,4,7,8-PeCDF		82.9	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		84.4	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		83.5	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		74.5	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		88.8	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		87.9	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		78.3	(26%-138%)
				10.5	(20/0-100/0)
		37Cl-2,3,7,8-TCDD		85.4	(35%-197%)
782002	SFPR-002	*			(35%-197%) (25%-164%)

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: 3782

Matrix Type: SOLID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
3782002	SFPR-002	13C-1,2,3,4,7,8-HxCDD		88.1 D	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		88.3 D	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		97.6 D	(23%-140%)
		13C-OCDD		99.3 D	(17%-157%)
		13C-2,3,7,8-TCDF		85.0 D	(24%-169%)
		13C-1,2,3,7,8-PeCDF		94.7 D	(24%-185%)
		13C-2,3,4,7,8-PeCDF		103 D	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		91.8 D	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		87.6 D	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		78.5 D	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		93.0 D	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		90.3 D	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		92.7 D	(26%-138%)
		37Cl-2,3,7,8-TCDD		85.2 D	(35%-197%)

* Recovery outside Acceptance Limits

Column to be used to flag recovery values D Sample Diluted CAS No.

1746-01-6

40321-76-4

39227-28-6

57653-85-7

of 2 Page 1

Hi-Res Dioxins/Furans Quality Control Summary Spike Recovery Report

Amount

Added

pg/g

20.0

100

100

100

100

100

200

20.0

100

100

100

100

100

100

100

100

200

3782
LCS for batch 21572
12006428
HRP750
MJC

LCS

Parmname

1,2,3,7,8-PeCDD

1,2,3,4,7,8-HxCDD

1,2,3,6,7,8-HxCDD

1,2,3,7,8,9-HxCDD

1,2,3,4,6,7,8-HpCDD

1,2,3,4,6,7,8,9-OCDD

2,3,7,8-TCDF

1,2,3,7,8-PeCDF

2,3,4,7,8-PeCDF

1,2,3,4,7,8-HxCDF

1,2,3,6,7,8-HxCDF

2,3,4,6,7,8-HxCDF

1,2,3,7,8,9-HxCDF

1,2,3,4,6,7,8-HpCDF

1,2,3,4,7,8,9-HpCDF

1,2,3,4,6,7,8,9-OCDF

2,3,7,8-TCDD

Sample Type: Laboratory Control Sample Matrix: SOLID

Analysis Date: 07/19/2012 00:36 Prep Batch ID:21572 **Batch ID:** 21574

%

103

108

112

106

114

105

102

108

107

108

106

108

115

108

109

109

102

Recovery Acceptance

Limits

67-158

70-142

70-164

76-134

64-162

70-140

78-144

75-158

80-134

68-160

72-134

84-130

70-156

78-130

82-122

78-138

63-170

Spike

Conc.

pg/g

20.5

108

112

106

114

105

205

21.6

107

108

106

108

115

108

109

109

203

Dilution: 1

	51055 05 1
	19408-74-3
	35822-46-9
1	3268-87-9
	51207-31-9
	57117-41-6
	57117-31-4
	70648-26-9
	57117-44-9
	60851-34-5
	72918-21-9
	67562-39-4
	55673-89-7
	39001-02-0
ΩŽ.	
-	

of 2 Page 2

Hi-Res Dioxins/Furans Quality Control Summary Spike Recovery Report

3782
LCSD for batch 21572
12006429
HRP750
MJC

Sample Type: Laboratory Control Sample Duplicate SOLID Matrix:

Analysis Date: 07/19/2012 01:22 **Dilution: 1** Prep Batch ID:21572 **Batch ID:** 21574

			Amount Added	Spike Conc.	Recovery	Acceptance	RPD	Acceptance
CAS No.		Parmname	pg/g	pg/g	%	Limits	%	Limits
1746-01-6	LCSD	2,3,7,8-TCDD	20.0	21.3	107	67-158	3.72	0-20
40321-76-4	LCSD	1,2,3,7,8-PeCDD	100	111	111	70-142	2.32	0-20
39227-28-6	LCSD	1,2,3,4,7,8-HxCDD	100	114	114	70-164	1.97	0-20
57653-85-7	LCSD	1,2,3,6,7,8-HxCDD	100	106	106	76-134	0.00944	0-20
19408-74-3	LCSD	1,2,3,7,8,9-HxCDD	100	111	111	64-162	2.58	0-20
35822-46-9	LCSD	1,2,3,4,6,7,8-HpCDD	100	110	110	70-140	4.28	0-20
3268-87-9	LCSD	1,2,3,4,6,7,8,9-OCDD	200	212	106	78-144	3.34	0-20
51207-31-9	LCSD	2,3,7,8-TCDF	20.0	22.6	113	75-158	4.45	0-20
57117-41-6	LCSD	1,2,3,7,8-PeCDF	100	111	111	80-134	3.36	0-20
57117-31-4	LCSD	2,3,4,7,8-PeCDF	100	110	110	68-160	1.87	0-20
70648-26-9	LCSD	1,2,3,4,7,8-HxCDF	100	111	111	72-134	4.88	0-20
57117-44-9	LCSD	1,2,3,6,7,8-HxCDF	100	111	111	84-130	2.82	0-20
60851-34-5	LCSD	2,3,4,6,7,8-HxCDF	100	121	121	70-156	5.29	0-20
72918-21-9	LCSD	1,2,3,7,8,9-HxCDF	100	108	108	78-130	0.137	0-20
67562-39-4	LCSD	1,2,3,4,6,7,8-HpCDF	100	114	114	82-122	4.90	0-20
55673-89-7	LCSD	1,2,3,4,7,8,9-HpCDF	100	112	112	78-138	2.72	0-20
39001-02-0	LCSD	1,2,3,4,6,7,8,9-OCDF	200	208	104	63-170	2.61	0-20

Page 1 of 2

Hi-Res Dioxins/Furans Quality Control Summary Spike Recovery Report

SDG Number:	3782
Client ID:	SFPR-001(3782001MS)
Lab Sample ID:	12006430
Instrument:	HRP750
Analyst:	MJC

very Report		
Sample Type:	Matrix Spike	
Matrix:	SOLID	
%Moisture:	8.5	
Analysis Date:	07/19/2012 03:42	Dilution: 1
Prep Batch ID	:21572	
Batch ID:	21574	

			Amount Added	Spike Conc.	Recovery	Acceptance	
CAS No.		Parmname	pg/g	pg/g	%	Limits	
1746-01-6	MS	2,3,7,8-TCDD	19.2 J	20.1	102	70-130	
40321-76-4	MS	1,2,3,7,8-PeCDD	96.0 J	106	110	70-130	
39227-28-6	MS	1,2,3,4,7,8-HxCDD	96.0 J	105	107	70-130	
57653-85-7	MS	1,2,3,6,7,8-HxCDD	96.0	105	104	70-130	
19408-74-3	MS	1,2,3,7,8,9-HxCDD	96.0 J	103	104	70-130	
35822-46-9	MS	1,2,3,4,6,7,8-HpCDD	96.0	565	122	70-130	
3268-87-9	MS	1,2,3,4,6,7,8,9-OCDD	192 E	7890	226 *	70-130	
51207-31-9	MS	2,3,7,8-TCDF	19.2	21.4	106	70-130	
57117-41-6	MS	1,2,3,7,8-PeCDF	96.0 J	104	108	70-130	
57117-31-4	MS	2,3,4,7,8-PeCDF	96.0 J	102	106	70-130	
70648-26-9	MS	1,2,3,4,7,8-HxCDF	96.0 J	102	105	70-130	
57117-44-9	MS	1,2,3,6,7,8-HxCDF	96.0 J	105	108	70-130	
60851-34-5	MS	2,3,4,6,7,8-HxCDF	96.0 J	110	113	70-130	
72918-21-9	MS	1,2,3,7,8,9-HxCDF	96.0 U	101	105	70-130	
67562-39-4	MS	1,2,3,4,6,7,8-HpCDF	96.0	136	106	70-130	
55673-89-7	MS	1,2,3,4,7,8,9-HpCDF	96.0 J	106	109	70-130	
39001-02-0	MS	1,2,3,4,6,7,8,9-OCDF	192	351	88.9	70-130	

Page 2 of 2

Hi-Res Dioxins/Furans Quality Control Summary Spike Recovery Report

SDG Number:	3782
Client ID:	SFPR-001(3782001MSD)
Lab Sample ID:	12006431
Instrument:	HRP750
Analyst:	MJC

Sample Type:	Matrix Spike Duplicate	
Matrix:	SOLID	
%Moisture:	8.5	
Analysis Date	: 07/19/2012 04:29	Dilution: 1
Prep Batch ID	:21572	
Batch ID:	21574	

Batc	h ID:2157	2			
h ID:	2157	4			
	Spike				
	Cone	Recovery	Accentance	DDD	Ar

			Added		Conc.	Recovery	Acceptance	RPD	Acceptance
CAS No.		Parmname	pg/g		pg/g	%	Limits	%	Limits
1746-01-6	MSD	2,3,7,8-TCDD	19.1	J	20.3	103	70-130	0.992	0-20
40321-76-4	MSD	1,2,3,7,8-PeCDD	95.7	J	104	108	70-130	2.36	0-20
39227-28-6	MSD	1,2,3,4,7,8-HxCDD	95.7	J	107	110	70-130	2.32	0-20
57653-85-7	MSD	1,2,3,6,7,8-HxCDD	95.7		111	111	70-130	5.68	0-20
19408-74-3	MSD	1,2,3,7,8,9-HxCDD	95.7	J	109	110	70-130	5.17	0-20
35822-46-9	MSD	1,2,3,4,6,7,8-HpCDD	95.7		608	168 *	70-130	7.37	0-20
3268-87-9	MSD	1,2,3,4,6,7,8,9-OCDD	191	Е	7990	279 *	70-130	1.26	0-20
51207-31-9	MSD	2,3,7,8-TCDF	19.1		21.1	105	70-130	1.15	0-20
57117-41-6	MSD	1,2,3,7,8-PeCDF	95.7	J	106	110	70-130	1.73	0-20
57117-31-4	MSD	2,3,4,7,8-PeCDF	95.7	J	104	109	70-130	2.04	0-20
70648-26-9	MSD	1,2,3,4,7,8-HxCDF	95.7	J	104	108	70-130	1.66	0-20
57117-44-9	MSD	1,2,3,6,7,8-HxCDF	95.7	J	105	109	70-130	0.703	0-20
60851-34-5	MSD	2,3,4,6,7,8-HxCDF	95.7	J	112	116	70-130	2.47	0-20
72918-21-9	MSD	1,2,3,7,8,9-HxCDF	95.7	U	103	108	70-130	2.18	0-20
67562-39-4	MSD	1,2,3,4,6,7,8-HpCDF	95.7		141	111	70-130	3.66	0-20
55673-89-7	MSD	1,2,3,4,7,8,9-HpCDF	95.7	J	107	110	70-130	0.929	0-20
39001-02-0	MSD	1,2,3,4,6,7,8,9-OCDF	191		372	100	70-130	5.86	0-20

Amount

Cape Fear Anal	lytical LLC				Report 1	Date:	July 19, 2012
		Hi-Res Dioxins/F	urans			Page 1	of 2
		Quality Control Su	ımmary				
		Spike Recovery H	Report				
SDG Number:	3782	Samp	ole Type: Ma	trix Spike			
Client ID:	SFPR-001(3782001MS)	Matr	ix: SO	LID			
Lab Sample ID:	12006430	%Mo	isture: 8.5				
Instrument:	HRP763	Analy	sis Date: 07/	19/2012 09:5	52	Dilution	:1
Analyst:	MJC	Prep	Batch ID:215	572			
		Batch	n ID: 215	574			
		Amount Added	Spike Conc.	Recovery	Acceptance		
CAS No.	Parmname	pg/g	pg/g	%	Limits		
51207-31-9	MS 2,3,7,8-TCDF	19.2	19.5	95.9	70-130		

Cape Fear Anal	lytical LLC				Report I	Date:	July 19, 2012
		Hi-Res Dioxins/Fu	irans			Page 2	2 of 2
		Quality Control Su	mmary				
		Spike Recovery R	leport				
SDG Number:	3782	Sampl	le Type: Ma	trix Spike D	uplicate		
Client ID:	SFPR-001(3782001MSD)	Matri	x: SO	LID			
Lab Sample ID:	12006431	%Moi	sture: 8.5				
Instrument:	HRP763	Analy	sis Date: 07/2	19/2012 10:1	1	Dilutio	n: 1
Analyst:	MJC	Prep I	Batch ID:215	72			
		Batch	ID: 215	574			
		Amount	Spike				
		Added	Conc.	Recovery	Acceptance		-
CAS No.	Parmname	pg/g	pg/g	%	Limits	%	Limits
51207-31-9	MSD 2,3,7,8-TCDF	19.1	20.2	99.9	70-130	3.62	0-20

Method Blank Summary

Report Date: July 19, 2012

Page 1 of 1

SDG Number:	3782	Client:	TETR001	Matrix:	SOLID
Client ID:	MB for batch 21572	Instrument ID:	HRP750	Data File:	A17JUL12A_6-3
Lab Sample ID:	12006427	Prep Date:	17-JUL-12	Analyzed:	07/19/12 02:09
Column:		-			

This method blank applies to the following samples and quality control samples:

Client Sample ID	Lab Sample ID	File ID	Date Analyzed	Time Analyzed	
01 LCS for batch 21572	12006428	A17JUL12A_6-1	07/19/12	0036	
02 LCSD for batch 21572	12006429	A17JUL12A_6-2	07/19/12	0122	
03 SFPR-001	3782001	A17JUL12A_6-4	07/19/12	0256	
04 SFPR-001(3782001MS)	12006430	A17JUL12A_6-5	07/19/12	0342	
05 SFPR-001(3782001MSD)	12006431	A17JUL12A_6-6	07/19/12	0429	
06 SFPR-002	3782002	A17JUL12A_6-12	07/19/12	0911	
07 SFPR-001	3782001	b19jul12a-4	07/19/12	0932	
08 SFPR-001(3782001MS)	12006430	b19jul12a-5	07/19/12	0952	
09 SFPR-001(3782001MSD)	12006431	b19jul12a-6	07/19/12	1011	

Report Date:	July 19, 2012
r	····

		Certifie	Dioxins/Furans cate of Analysis ple Summary			Page 1 of 1
SDG Numbe Lab Sample Client Sampl	ID: 12006427	Client:	TETR001		Project: Matrix:	TETR00111 SOLID
Client ID: Batch ID:	MB for batch 21572 21574	Method:	EPA Method 1613B		Prep Basis:	As Received
Run Date:	07/19/2012 02:09	Analyst:	MJC		Instrument:	HRP750
Data File: Prep Batch: Prep Date:	A17JUL12A_6-3 21572 17-JUL-12	Prep Method: Aliquot:	SW846 3540C 10 g		Dilution:	1
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD	U	.0808	pg/g	0.0808	1.00
40321-76-4	1,2,3,7,8-PeCDD	J	0.088	pg/g	0.0682	5.00
39227-28-6	1,2,3,4,7,8-HxCDD	U	.124	pg/g	0.124	5.00
57653-85-7	1,2,3,6,7,8-HxCDD	U	.122	pg/g	0.122	5.00
19408-74-3	1,2,3,7,8,9-HxCDD	U	.127	pg/g	0.127	5.00
35822-46-9	1,2,3,4,6,7,8-HpCDD	J	0.166	pg/g	0.157	5.00
3268-87-9	1,2,3,4,6,7,8,9-OCDD	J	0.818	pg/g	0.290	10.0
51207-31-9	2,3,7,8-TCDF	J	0.312	pg/g	0.0934	1.00
57117-41-6	1,2,3,7,8-PeCDF	U	.0608	pg/g	0.0608	5.00
57117-31-4	2,3,4,7,8-PeCDF	J	0.112	pg/g	0.060	5.00
70648-26-9	1,2,3,4,7,8-HxCDF	U	.0694	pg/g	0.0694	5.00
57117-44-9	1,2,3,6,7,8-HxCDF	U	.0664	pg/g	0.0664	5.00
60851-34-5	2,3,4,6,7,8-HxCDF	U	.0812	pg/g	0.0812	5.00
72918-21-9	1,2,3,7,8,9-HxCDF	U	.0992	pg/g	0.0992	5.00
67562-39-4	1,2,3,4,6,7,8-HpCDF	U	.0866	pg/g	0.0866	5.00
55673-89-7	1,2,3,4,7,8,9-HpCDF	U	.143	pg/g	0.143	5.00
39001-02-0	1,2,3,4,6,7,8,9-OCDF	U	.149	pg/g	0.149	10.0

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		177	200	pg/g	88.4	(25%-164%)
13C-1,2,3,7,8-PeCDD		178	200	pg/g	89.2	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		161	200	pg/g	80.3	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		180	200	pg/g	89.9	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		166	200	pg/g	82.9	(23%-140%)
13C-OCDD		312	400	pg/g	78.0	(17%-157%)
13C-2,3,7,8-TCDF		173	200	pg/g	86.4	(24%-169%)
13C-1,2,3,7,8-PeCDF		172	200	pg/g	86.1	(24%-185%)
13C-2,3,4,7,8-PeCDF		176	200	pg/g	87.8	(21%-178%)
13C-1,2,3,4,7,8-HxCDF		168	200	pg/g	84.1	(26%-152%)
13C-1,2,3,6,7,8-HxCDF		176	200	pg/g	88.0	(26%-123%)
13C-2,3,4,6,7,8-HxCDF		155	200	pg/g	77.6	(28%-136%)
13C-1,2,3,7,8,9-HxCDF		172	200	pg/g	85.9	(29%-147%)
13C-1,2,3,4,6,7,8-HpCDF		155	200	pg/g	77.6	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		157	200	pg/g	78.6	(26%-138%)
37Cl-2,3,7,8-TCDD		17.9	20.0	pg/g	89.3	(35%-197%)

J Value is estimated

Report Date:	July 19, 2012
· · · · · · · · · · · · · · · · · · ·	

		Certifi	Dioxins/Furans cate of Analysis ple Summary			Page 1 of 1
SDG Number Lab Sample I Client Sample	D: 12006428	Client:	TETR001		Project: Matrix:	TETR00111 SOLID
Client ID: Batch ID: Run Date:	LCS for batch 21572 21574 07/19/2012 00:36	Method: Analyst:	EPA Method 1613B MJC		Prep Basis: Instrument:	As Received HRP750
Data File: Prep Batch: Prep Date:	A17JUL12A_6-1 21572 17-JUL-12	Prep Method: Aliquot:	SW846 3540C 10 g		Dilution:	1
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD		20.5	pg/g	0.120	1.00
40321-76-4	1,2,3,7,8-PeCDD		108	pg/g	0.171	5.00
39227-28-6	1,2,3,4,7,8-HxCDD		112	pg/g	0.366	5.00
57653-85-7	1,2,3,6,7,8-HxCDD		106	pg/g	0.344	5.00
9408-74-3	1,2,3,7,8,9-HxCDD		114	pg/g	0.366	5.00
35822-46-9	1,2,3,4,6,7,8-HpCDD		105	pg/g	0.482	5.00
3268-87-9	1,2,3,4,6,7,8,9-OCDD		205	pg/g	0.970	10.0
51207-31-9	2,3,7,8-TCDF		21.6	pg/g	0.133	1.00
57117-41-6	1,2,3,7,8-PeCDF		107	pg/g	0.153	5.00
57117-31-4	2,3,4,7,8-PeCDF		108	pg/g	0.151	5.00
70648-26-9	1,2,3,4,7,8-HxCDF		106	pg/g	0.432	5.00
57117-44-9	1,2,3,6,7,8-HxCDF		108	pg/g	0.428	5.00
60851-34-5	2,3,4,6,7,8-HxCDF		115	pg/g	0.494	5.00
2918-21-9	1,2,3,7,8,9-HxCDF		108	pg/g	0.620	5.00
57562-39-4	1,2,3,4,6,7,8-HpCDF		109	pg/g	0.404	5.00
5673-89-7	1,2,3,4,7,8,9-HpCDF		109	pg/g	0.672	5.00
39001-02-0	1,2,3,4,6,7,8,9-OCDF		203	pg/g	0.676	10.0

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		176	200	pg/g	88.2	(20%-175%)
13C-1,2,3,7,8-PeCDD		172	200	pg/g	86.2	(21%-227%)
13C-1,2,3,4,7,8-HxCDD		167	200	pg/g	83.6	(21%-193%)
13C-1,2,3,6,7,8-HxCDD		185	200	pg/g	92.3	(25%-163%)
13C-1,2,3,4,6,7,8-HpCDD		175	200	pg/g	87.5	(22%-166%)
13C-OCDD		327	400	pg/g	81.7	(13%-199%)
13C-2,3,7,8-TCDF		171	200	pg/g	85.3	(22%-152%)
13C-1,2,3,7,8-PeCDF		172	200	pg/g	86.0	(21%-192%)
13C-2,3,4,7,8-PeCDF		176	200	pg/g	87.8	(13%-328%)
13C-1,2,3,4,7,8-HxCDF		172	200	pg/g	86.0	(19%-202%)
13C-1,2,3,6,7,8-HxCDF		178	200	pg/g	89.2	(21%-159%)
13C-2,3,4,6,7,8-HxCDF		161	200	pg/g	80.6	(22%-176%)
13C-1,2,3,7,8,9-HxCDF		180	200	pg/g	90.0	(17%-205%)
13C-1,2,3,4,6,7,8-HpCDF		169	200	pg/g	84.4	(21%-158%)
13C-1,2,3,4,7,8,9-HpCDF		168	200	pg/g	83.8	(20%-186%)
37Cl-2,3,7,8-TCDD		16.8	20.0	pg/g	83.9	(31%-191%)
Comments:						

Report Date:	July 19, 2012
· · · · · · · · · · · · · · · · · · ·	

		Certifi	Dioxins/Furans cate of Analysis ple Summary			Page 1 of 1
SDG Numbe Lab Sample Client Sampl	ID: 12006429	Client:	TETR001		Project: Matrix:	TETR00111 SOLID
Client ID: Batch ID: Run Date:	LCSD for batch 21572 21574 07/19/2012 01:22	Method: Analyst:	EPA Method 1613B MJC		Prep Basis: Instrument:	As Received HRP750
Data File: Prep Batch: Prep Date:	A17JUL12A_6-2 21572 17-JUL-12	Prep Method: Aliquot:	SW846 3540C 10 g		Dilution:	1
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD		21.3	pg/g	0.134	1.00
40321-76-4	1,2,3,7,8-PeCDD		111	pg/g	0.134	5.00
9227-28-6	1,2,3,4,7,8-HxCDD		114	pg/g	0.452	5.00
57653-85-7	1,2,3,6,7,8-HxCDD		106	pg/g	0.430	5.00
9408-74-3	1,2,3,7,8,9-HxCDD		111	pg/g	0.454	5.00
35822-46-9	1,2,3,4,6,7,8-HpCDD		110	pg/g	0.514	5.00
3268-87-9	1,2,3,4,6,7,8,9-OCDD		212	pg/g	0.802	10.0
51207-31-9	2,3,7,8-TCDF		22.6	pg/g	0.155	1.00
57117-41-6	1,2,3,7,8-PeCDF		111	pg/g	0.180	5.00
57117-31-4	2,3,4,7,8-PeCDF		110	pg/g	0.195	5.00
70648-26-9	1,2,3,4,7,8-HxCDF		111	pg/g	0.402	5.00
57117-44-9	1,2,3,6,7,8-HxCDF		111	pg/g	0.384	5.00
50851-34-5	2,3,4,6,7,8-HxCDF		121	pg/g	0.482	5.00
2918-21-9	1,2,3,7,8,9-HxCDF		108	pg/g	0.578	5.00
57562-39-4	1,2,3,4,6,7,8-HpCDF		114	pg/g	0.424	5.00
55673-89-7	1,2,3,4,7,8,9-HpCDF		112	pg/g	0.690	5.00
9001-02-0	1,2,3,4,6,7,8,9-OCDF		208	pg/g	0.500	10.0

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		177	200	pg/g	88.7	(20%-175%)
13C-1,2,3,7,8-PeCDD		173	200	pg/g	86.7	(21%-227%)
13C-1,2,3,4,7,8-HxCDD		159	200	pg/g	79.3	(21%-193%)
13C-1,2,3,6,7,8-HxCDD		174	200	pg/g	86.9	(25%-163%)
13C-1,2,3,4,6,7,8-HpCDD		161	200	pg/g	80.3	(22%-166%)
13C-OCDD		321	400	pg/g	80.3	(13%-199%)
13C-2,3,7,8-TCDF		171	200	pg/g	85.7	(22%-152%)
13C-1,2,3,7,8-PeCDF		175	200	pg/g	87.7	(21%-192%)
13C-2,3,4,7,8-PeCDF		178	200	pg/g	88.8	(13%-328%)
13C-1,2,3,4,7,8-HxCDF		160	200	pg/g	79.8	(19%-202%)
13C-1,2,3,6,7,8-HxCDF		168	200	pg/g	84.2	(21%-159%)
13C-2,3,4,6,7,8-HxCDF		146	200	pg/g	73.0	(22%-176%)
13C-1,2,3,7,8,9-HxCDF		169	200	pg/g	84.5	(17%-205%)
13C-1,2,3,4,6,7,8-HpCDF		155	200	pg/g	77.4	(21%-158%)
13C-1,2,3,4,7,8,9-HpCDF		154	200	pg/g	76.9	(20%-186%)
37Cl-2,3,7,8-TCDD		17.6	20.0	pg/g	87.9	(31%-191%)
Comments:						

Report Date:	July 19, 2012
inepoir Duter	ourj 17, 2011

		Certific	Dioxins/Furans ate of Analysis le Summary			Page 1 of 1
SDG Number Lab Sample I Client Sample	D: 12006430	Client: Date Collected: Date Received:	TETR001 07/16/2012 14:30 07/17/2012 09:51		Project: Matrix: %Moisture:	TETR00111 SOLID 8.5
Client ID: Batch ID: Run Date: Data File: Prep Batch: Prep Date:	SFPR-001(3782001MS) 21574 07/19/2012 03:42 A17JUL12A_6-5 21572 17-JUL-12	Method: Analyst: Prep Method: Aliquot:	EPA Method 1613B MJC SW846 3540C 11.38 g		Prep Basis: Instrument: Dilution:	Dry Weight HRP750 1
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD		20.1	pg/g	0.138	0.960
40321-76-4	1,2,3,7,8-PeCDD		106	pg/g	0.159	4.80
39227-28-6	1,2,3,4,7,8-HxCDD		105	pg/g	0.490	4.80
57653-85-7	1,2,3,6,7,8-HxCDD		105	pg/g	0.499	4.80
19408-74-3	1,2,3,7,8,9-HxCDD		103	pg/g	0.513	4.80
35822-46-9	1,2,3,4,6,7,8-HpCDD		565	pg/g	1.94	4.80
3268-87-9	1,2,3,4,6,7,8,9-OCDD	E	7890	pg/g	1.58	9.60
51207-31-9	2,3,7,8-TCDF		21.4	pg/g	0.169	0.960
57117-41-6	1,2,3,7,8-PeCDF		104	pg/g	0.271	4.80
57117-31-4	2,3,4,7,8-PeCDF		102	pg/g	0.261	4.80
70648-26-9	1,2,3,4,7,8-HxCDF		102	pg/g	0.451	4.80
57117-44-9	1,2,3,6,7,8-HxCDF		105	pg/g	0.457	4.80
60851-34-5	2,3,4,6,7,8-HxCDF		110	pg/g	0.530	4.80
72918-21-9	1,2,3,7,8,9-HxCDF		101	pg/g	0.551	4.80
67562-39-4	1,2,3,4,6,7,8-HpCDF		136	pg/g	0.372	4.80
55673-89-7	1,2,3,4,7,8,9-HpCDF		106	pg/g	0.697	4.80
39001-02-0	1,2,3,4,6,7,8,9-OCDF		351	pg/g	0.691	9.60

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
3C-2,3,7,8-TCDD		177	192	pg/g	92.1	(25%-164%)
3C-1,2,3,7,8-PeCDD		174	192	pg/g	90.7	(25%-181%)
3C-1,2,3,4,7,8-HxCDD		172	192	pg/g	89.6	(32%-141%)
3C-1,2,3,6,7,8-HxCDD		169	192	pg/g	88.0	(28%-130%)
3C-1,2,3,4,6,7,8-HpCDD		166	192	pg/g	86.7	(23%-140%)
3C-OCDD		389	384	pg/g	101	(17%-157%)
3C-2,3,7,8-TCDF		169	192	pg/g	88.3	(24%-169%)
3C-1,2,3,7,8-PeCDF		178	192	pg/g	92.9	(24%-185%)
3C-2,3,4,7,8-PeCDF		178	192	pg/g	92.8	(21%-178%)
3C-1,2,3,4,7,8-HxCDF		168	192	pg/g	87.3	(26%-152%)
3C-1,2,3,6,7,8-HxCDF		168	192	pg/g	87.5	(26%-123%)
3C-2,3,4,6,7,8-HxCDF		153	192	pg/g	79.9	(28%-136%)
3C-1,2,3,7,8,9-HxCDF		185	192	pg/g	96.4	(29%-147%)
3C-1,2,3,4,6,7,8-HpCDF		179	192	pg/g	93.2	(28%-143%)
3C-1,2,3,4,7,8,9-HpCDF		162	192	pg/g	84.3	(26%-138%)
37Cl-2,3,7,8-TCDD		17.7	19.2	pg/g	92.0	(35%-197%)

E Value is estimated - Concentration of the target analyte exceeds the instrument calibration range

		Certific	Dioxins/Furans cate of Analysis ble Summary			Page 1 of 1
SDG Number: Lab Sample ID: Client Sample:	3782 12006430 QC for batch 21572	Client: Date Collected: Date Received:	TETR001 07/16/2012 14:30 07/17/2012 09:51		Project: Matrix: %Moisture:	TETR00111 SOLID 8.5
Client ID:	SFPR-001(3782001MS)				Prep Basis:	Dry Weight
Batch ID: Run Date: Data File:	21574 07/19/2012 09:52 b19jul12a-5	Method: Analyst:	EPA Method 1613B MJC		Instrument: Dilution:	HRP763 1
Prep Batch:	21572	Prep Method:	SW846 3540C			
Prep Date:	17-JUL-12	Aliquot:	11.38 g			
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
51207-31-9 2,3,	7,8-TCDF		19.5	pg/g	0.303	0.960
Surrogate/Trace	r recovery	Qual Result	Nominal Units	Recovery%	% Acceptab	le Limits

Comments:

E Value is estimated - Concentration of the target analyte exceeds the instrument calibration range

Report Date:	July 19, 2012
---------------------	---------------

		Certific	Dioxins/Furans ate of Analysis dle Summary			Page 1 of 1
SDG Number Lab Sample I Client Sampl	ID: 12006431	Client: Date Collected: Date Received:	TETR001 07/16/2012 14:30 07/17/2012 09:51		Project: Matrix: %Moisture:	TETR00111 SOLID 8.5
Client ID: Batch ID: Run Date: Data File: Prep Batch:	SFPR-001(3782001MSD) 21574 07/19/2012 04:29 A17JUL12A_6-6 21572	Method: Analyst: Prep Method: Aliquot:	EPA Method 1613B MJC SW846 3540C 11.41 g		Prep Basis: Instrument: Dilution:	Dry Weight HRP750 1
Prep Date: CAS No.	17-JUL-12 Parmname	Anquot. Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD	-	20.3	pg/g	0.153	0.957
40321-76-4	1,2,3,7,8-PeCDD		104	pg/g	0.184	4.79
39227-28-6	1,2,3,4,7,8-HxCDD		107	pg/g	0.538	4.79
57653-85-7	1,2,3,6,7,8-HxCDD		111	pg/g	0.544	4.79
19408-74-3	1,2,3,7,8,9-HxCDD		109	pg/g	0.561	4.79
35822-46-9	1,2,3,4,6,7,8-HpCDD		608	pg/g	2.01	4.79
3268-87-9	1,2,3,4,6,7,8,9-OCDD	E	7990	pg/g	1.66	9.57
51207-31-9	2,3,7,8-TCDF		21.1	pg/g	0.209	0.957
57117-41-6	1,2,3,7,8-PeCDF		106	pg/g	0.222	4.79
57117-31-4	2,3,4,7,8-PeCDF		104	pg/g	0.211	4.79
70648-26-9	1,2,3,4,7,8-HxCDF		104	pg/g	0.496	4.79
57117-44-9	1,2,3,6,7,8-HxCDF		105	pg/g	0.507	4.79
60851-34-5	2,3,4,6,7,8-HxCDF		112	pg/g	0.574	4.79
72918-21-9	1,2,3,7,8,9-HxCDF		103	pg/g	0.649	4.79
67562-39-4	1,2,3,4,6,7,8-HpCDF		141	pg/g	0.456	4.79
55673-89-7	1,2,3,4,7,8,9-HpCDF		107	pg/g	0.848	4.79
39001-02-0	1,2,3,4,6,7,8,9-OCDF		372	pg/g	0.701	9.57

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		159	191	pg/g	82.9	(25%-164%)
13C-1,2,3,7,8-PeCDD		157	191	pg/g	81.8	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		156	191	pg/g	81.2	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		161	191	pg/g	84.0	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		158	191	pg/g	82.7	(23%-140%)
13C-OCDD		369	383	pg/g	96.4	(17%-157%)
13C-2,3,7,8-TCDF		154	191	pg/g	80.5	(24%-169%)
13C-1,2,3,7,8-PeCDF		159	191	pg/g	83.3	(24%-185%)
13C-2,3,4,7,8-PeCDF		159	191	pg/g	82.9	(21%-178%)
13C-1,2,3,4,7,8-HxCDF		162	191	pg/g	84.4	(26%-152%)
13C-1,2,3,6,7,8-HxCDF		160	191	pg/g	83.5	(26%-123%)
13C-2,3,4,6,7,8-HxCDF		143	191	pg/g	74.5	(28%-136%)
13C-1,2,3,7,8,9-HxCDF		170	191	pg/g	88.8	(29%-147%)
13C-1,2,3,4,6,7,8-HpCDF		168	191	pg/g	87.9	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		150	191	pg/g	78.3	(26%-138%)
37Cl-2,3,7,8-TCDD		16.3	19.1	pg/g	85.4	(35%-197%)

Comments:

E Value is estimated - Concentration of the target analyte exceeds the instrument calibration range

			Page 1 of 1			
			ate of Analysis de Summary			
SDG Number: Lab Sample ID: Client Sample:	3782 12006431 QC for batch 21572	Client: Date Collected: Date Received:	TETR001 07/16/2012 14:30 07/17/2012 09:51		Project: Matrix: %Moisture:	TETR00111 SOLID 8.5
Client ID: Batch ID:	SFPR-001(3782001MSD) 21574	Method:	EPA Method 1613B		Prep Basis:	Dry Weight
Run Date: Data File: Prep Batch:	07/19/2012 10:11 b19jul12a-6 21572	Analyst: Prep Method:	MJC SW846 3540C		Instrument: Dilution:	HRP763 1
Prep Date:	17-JUL-12	Aliquot:	11.41 g			
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
51207-31-9 2,3,	7,8-TCDF		20.2	pg/g	0.299	0.957
Surrogate/Trace	r recovery	Qual Result	Nominal Units	Recovery	% Acceptab	le Limits

Comments:

E Value is estimated - Concentration of the target analyte exceeds the instrument calibration range

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica St. Louis 13715 Rider Trail North Earth City, MO 63045 Tel: (314)298-8566

TestAmerica Job ID: 160-304-1 Client Project/Site: Waste Characterization

For: Tetra Tech EM Inc. 415 Oak Street Kansas City, Missouri 64106

Attn: Ms. Emily Fisher

Authorized for release by: 7/25/2012 2:57:09 PM

Erika Starman Project Manager I erika.starman@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

ARCHIVE DOCUMENT п

Review your project

.... LINKS

results through TOTALACCESS

Expert

Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Chain of Custody	8
Receipt Checklists	10
Definitions/Glossary	11
Method Summary	12
Sample Summary	13
Detection Summary	14
Client Sample Results	15
QC Sample Results	18
QC Association Summary	34
Surrogate Summary	39
Sample Summary	43
· · · · · ·	

Job ID: 160-304-1

Laboratory: TestAmerica St. Louis

Narrative

CASE NARRATIVE

Client: Tetra Tech EM Inc.

Project: Waste Characterization

Report Number: 160-304-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica St. Louis attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

OCUMENT

п

ARCHTV

E

П

The samples were received on 07/17/2012; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 5.0 C.

TCLP VOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample SFPR-002 (160-304-1) was analyzed for TCLP volatile organic compounds (GC-MS) in accordance with EPA SW846 Method 1311/8260C. The samples were leached on 07/19/2012 and analyzed on 07/22/2012.

Carbon tetrachloride failed the recovery criteria high for the MS of sample SFPR-002MS (160-304-1) in batch 160-6982. Sample is ND for this analyte and data is reported.

The continuing calibration verification (CCV) for analytical batch 6982 exceeded control criteria for Acetone, Diethyl ether, 2-Nitropropane, Nonanal, Naphthalene and 1,2,3-Trichlorobenzene. The data have been qualified and reported. CCV exceedances for non-requested analytes do not impact data quality.

Refer to the QC report for details.

No other difficulties were encountered during the VOCs analysis.

Laboratory: TestAmerica St. Louis (Continued)

All other quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample SFPR-002 (160-304-1) was analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260C. The samples were prepared on 07/18/2012 and analyzed on 07/19/2012.

2-Nitropropane and Ethyl ether failed the recovery criteria high for the MS of sample SFPR-002MS (160-304-1) in batch 160-6980.

2-Nitropropane failed the recovery criteria high for the MSD of sample SFPR-002MSD (160-304-1) in batch 160-6980. Ethyl acetate exceeded the matrix spike / matrix spike duplicate rpd limit.

The laboratory control sample (LCS) for batch 6980 exceeded control limits for the following analytes: 2-Nitropropane, Acetone, Ethyl acetate, Isobutanol and n-Butyl alcohol. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Refer to the QC report for details.

No other difficulties were encountered during the VOCs analysis.

All other quality control parameters were within the acceptance limits.

TCLP SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS)

Sample SFPR-002 (160-304-1) was analyzed for TCLP semivolatile organic compounds (GC-MS) in accordance with EPA SW-846 Methods 1311 / 8270D. The samples were leached on 07/19/2012, prepared on 07/20/2012 and analyzed on 07/22/2012.

Pyridine exceeded the rpd limit for the MSD of sample SFPR-002MSD (160-304-1) in batch 160-7018.

Refer to the QC report for details.

DOCUMENT

п

A ARCHIV

П

No other difficulties were encountered during the SVOCs analysis.

All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC/MS)

Sample SFPR-002 (160-304-1) was analyzed for Semivolatile Organic Compounds (GC/MS) in accordance with EPA SW-846 Method 8270D. The samples were prepared on 07/19/2012 and analyzed on 07/22/2012.

No difficulties were encountered during the Semi-VOA analysis.

All quality control parameters were within the acceptance limits.

ORGANICS BY DIRECT AQUEOUS INJECTION-METHANOL

Sample SFPR-002 (160-304-1) was analyzed for organics by direct aqueous injection in accordance with EPA SW-846 Method 8015B - DAI. The samples were leached on 07/20/2012 and analyzed on 07/23/2012.

No difficulties were encountered during the DAI analysis.

All quality control parameters were within the acceptance limits.

TCLP CHLORINATED PESTICIDES

Sample SFPR-002 (160-304-1) was analyzed for TCLP chlorinated pesticides in accordance with EPA SW-846 Methods 1311/ 8081B. The samples were leached on 07/19/2012, and prepared and analyzed on 07/23/2012.

The %RPD between the primary and confirmation column exceeded 40% for Methoxychlor for the following sampl: SFPR-002 (160-304-1). The lower value has been reported and qualified in accordance with the laboratory's SOP.

Laboratory: TestAmerica St. Louis (Continued)

DCB Decachlorobiphenyl (Surr) failed the surrogate recovery criteria low for MB. All associated sample surrogates with batch 7050 fell within acceptance criteria; therefore, the data have been reported. Refer to the QC report for details.

No other difficulties were encountered during the pesticides analysis.

All quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS (PCBS)

Sample SFPR-002 (160-304-1) was analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082. The samples were prepared on 07/19/2012 and analyzed on 07/23/2012.

No difficulties were encountered during the PCBs analysis.

All quality control parameters were within the acceptance limits.

TCLP CHLORINATED HERBICIDES

Sample SFPR-002 (160-304-1) was analyzed for TCLP chlorinated herbicides in accordance with EPA SW-846 Methods 1311/ 8151A. The samples were leached on 07/19/2012, prepared on 07/20/2012 and analyzed on 07/23/2012.

No difficulties were encountered during the herbicides analysis.

All quality control parameters were within the acceptance limits.

TCLP METALS (ICP)

DOCUMENT

ARCHIVE

⊲

п

Sample SFPR-002 (160-304-1) was analyzed for TCLP metals (ICP) in accordance with EPA SW-846 Method 1311/6010C. The samples were leached on 07/19/2012, prepared on 07/20/2012 and analyzed on 07/23/2012.

The samples were run with one of the calibration standards, as well as the ICSA and ICSAB having expired two days prior to being run. The parent standards were not expired, and all of the QC in the batch was acceptable, showing that the expired standards did not adversely affect the data.

No difficulties were encountered during the metals analysis.

All quality control parameters were within the acceptance limits.

TCLP MERCURY

Sample SFPR-002 (160-304-1) was analyzed for TCLP mercury in accordance with EPA SW-846 Methods 1311/7470A. The samples were leached on 07/19/2012, and prepared and analyzed on 07/23/2012.

No difficulties were encountered during the mercury analysis.

All quality control parameters were within the acceptance limits.

IGNITABILITY, PENSKY-MARTENS CLOSED CUP METHOD

Sample SFPR-002 (160-304-1) was analyzed for Ignitability, Pensky-Martens Closed Cup Method in accordance with EPA SW-846 Method 1010. The samples were analyzed on 07/23/2012.

No other difficulties were encountered during the Ignitability, CCM analysis.

All other quality control parameters were within the acceptance limits.

REACTIVE CYANIDE

Sample SFPR-002 (160-304-1) was analyzed for reactive cyanide in accordance with EPA SW-846 Method 7.3.3. The samples were prepared on 07/23/2012 and analyzed on 07/24/2012.

Laboratory: TestAmerica St. Louis (Continued)

The following sample was diluted to bring the concentration of the target analyte within the expected calibration range: (LCS 160-7013/2-A ^2). Elevated reporting limits (RLs) are provided.

No difficulties were encountered during the Reactive cynide analysis.

All quality control parameters were within the acceptance limits.

REACTIVE SULFIDE

Sample SFPR-002 (160-304-1) was analyzed for reactive sulfide in accordance with EPA SW-846 Method 7.3.4. The samples were prepared on 07/23/2012 and analyzed on 07/24/2012.

Sulfide, Reactive was detected in method blank MB 160-7014/1-A at a level exceeding the reporting limit.

Sulfide, Reactive failed the recovery criteria high for LCS 160-7014/2-A. The analyte was not detected in the associated sample; therefore, the data has been reported.

Sulfide, Reactive failed the recovery criteria low for the MS of sample SFPR-002MS (160-304-1) in batch 160-7054.

Refer to the QC report for details.

No other difficulties were encountered during the sulfide analysis.

All other quality control parameters were within the acceptance limits.

PH

DOCUMENT

п

ARCHTV

₽

П

Sample SFPR-002 (160-304-1) was analyzed for pH in accordance with EPA SW-846 Method 9045D. The samples were prepared and analyzed on 07/23/2012.

No difficulties were encountered during the pH analysis.

All quality control parameters were within the acceptance limits.

PHENOLICS, TOTAL RECOVERABLE

Sample SFPR-002 (160-304-1) was analyzed for phenolics, total recoverable in accordance with EPA SW-846 Method 9066. The samples were prepared on 07/20/2012 and analyzed on 07/24/2012.

No difficulties were encountered during the total phenols analysis.

All quality control parameters were within the acceptance limits.

PAINT FILTER

Sample SFPR-002 (160-304-1) was analyzed for Paint Filter in accordance with EPA SW-846 Method 9095B. The samples were analyzed on 07/23/2012.

No difficulties were encountered during the Paint Filter analysis.

All quality control parameters were within the acceptance limits.

PERCENT SOLIDS

Sample SFPR-002 (160-304-1) was analyzed for percent solids in accordance with EPA Method 160.3 MOD. The samples were analyzed on 07/18/2012.

No difficulties were encountered during the % solids analysis.

Laboratory: TestAmerica St. Louis (Continued)

All quality control parameters were within the acceptance limits.

ACTIVITY LEADER(Pr	int)	V.	NAM	E OF SUR	VEY O	STODY RE Ction Age	Y	,			Tetra Tech Indernat X9604,12,0293 DATE, OF COLLEGTION, Z SHEET DAY MONTH YEAR / Of
ACTIVITY LEADER (Pr JIM SIN CONTENTS OF SHIPN	rer pa	Je Kin	Nith	strec	Kes	tore	5	T			DAY MONTH YEAR / Of
CONTENTS OF SHIPN	MENT			P85	+1	Remon	Va	10	Sav	mil	ling
SAMPLE		3202	PE OF CONTA	INERS	- 1	VOA SET	S	AMPL	ED ME	DIA	RECEIVING LABORATORY REMARKS/OTHER INFORMATION
NUMBER	CUBITAINER	BOTTLE	BOTTLE	BOTTI SAMPLE NU		(2 VIALS EA)	water	sorl	sediment		the sample numbers. etc.)
SFPR-002		1						X	1 2	X	
			$ _{L^{\infty}} \leq _{L^{\infty}}$								list attached de
											TCLP Pesticides/H.
				_							1
			-	_					1		
				-		/	\leq			-	
						/					
					4		-	-	+	tt	
				/	- 14		Ł	1	1p	F	
			-/	1-	2.01	le_	-		-	+	
			1-	1	Xo	10	+	17	3-	1-	
	-	-/	1			11	1			+	
· · · ·		1			-	. 1				-	
	/			-					+	+	
	1				-		\vdash		+	+	
	/								+	+	
	-				-		1			1	
/	1				2.17					1	
						1					
		/									
1											
DESCRIPTION OF SH	IPMENT				M	DDE OF SH	IPM	ENT			
PIECE(S) CO	NSISTING OF		BOX(ES)		-		ERCI	AL C	ARRIE	R:	
	S); OTHER		- 21- 2		-	COURIE		ON	EVEO		
PERSONNEL CUSTO		_		_	1 =	ƏAIMIPL	en u	VNU	CTEU	e.	(SHIPPING DOCUMENT NUMBER)
RELINQUISHED BY			TE TIN	AE F	RECEI	VED BY	-7	1/1	112		REASON FOR CHANGE OF CUSTOD
portai	with	7/1	7/12 11	\$	R	David		11	33		Transport tola
SEALED	UNSEALE	DAT	TE TH	NE F	SEA	LED BY		ÚNS	SEAL	ED	REASON FOR CHANGE OF CUSTOD
				12 M							
					SEALED UNSEALED						

US EPA ARCHIVE DOCUMENT

T

CODE R

Standard analytical required at all our landfills with the exceptions shown below

State of Illinois Permit

pH

Paint Filter (Free Liquids) **Reactive** Cyanide **Reactive Sulfide Total Phenolics** Flash Point (Open Cup) PCB's (if suspect or unknown) F-Code Solvent Scan (if suspect or unknown) TOX (required only for Five Oaks, Milam, Tazewell, and Cottonwood Hills for liquids for solidification) also add TCLP Pesticides/Herblaides

TCLP Organics

TCLP Metals

Benzene Carbon Tetrachloride Chlorobenzene Chloroform o-Cresol m-Cresol p-Cresol 1.4-Dichlorobenzene 1,2-Dichlorethane 1,1-Dichloroethene 2.4-Dinitrotoluene Hexachlorobenzene Hexachloro-1.3 butadiene Hexachloroethane Methyl Ethyl Ketone

Nitrobenzene Pentachlorophenol Pyridine Tetrachloroethylene Trichloroethylene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol Vinyl Chloride

Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver

EXCEPTIONS

Not required for UST petroleum fuel product. contamination. What is required for UST petroleum

fuel product contamination is pH, paint filter, flash point, and TCLP lead. Not required for wood material contaminated with creosol. For creosol contamination, if the waste is over 10 years old and is weathered, no analytical is required. If less than 10 years and/or not weathered, TCLP Arsenic, TCLP Creosol, and TCLP Pentachlorophenol are required.

Login Sample Receipt Checklist

Client: Tetra Tech EM Inc. Job Number: 160-304-1 Login Number: 304 List Source: TestAmerica St. Louis List Number: 1 Creator: Daniels, Brian Question Answer Comment Radioactivity either was not measured or, if measured, is at or below background The cooler's custody seal, if present, is intact. The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. Multiphasic samples are not present. Samples do not require splitting or compositing. Residual Chlorine Checked.

Qualifiers

GC/MS VOA	
Qualifier	Qualifier Description
*	LCS or LCSD exceeds the control limits
F	MS or MSD exceeds the control limits
F	RPD of the MS and MSD exceeds the control limits
GC/MS Semi	VOA
Qualifier	Qualifier Description
F	RPD of the MS and MSD exceeds the control limits
GC Semi VOA	
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
р	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.
х	Surrogate is outside control limits
Metals	
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
General Chen	nistry
Qualifier	Qualifier Description
*	LCS or LCSD exceeds the control limits
F	MS or MSD exceeds the control limits
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	
	United States Environmental Protection Agency
MDL	United States Environmental Protection Agency Method Detection Limit
MDL	Method Detection Limit
MDL ML	Method Detection Limit Minimum Level (Dioxin)
MDL ML ND	Method Detection Limit Minimum Level (Dioxin) Not detected at the reporting limit (or MDL or EDL if shown)
MDL ML ND PQL	Method Detection Limit Minimum Level (Dioxin) Not detected at the reporting limit (or MDL or EDL if shown) Practical Quantitation Limit
MDL ML ND PQL QC	Method Detection Limit Minimum Level (Dioxin) Not detected at the reporting limit (or MDL or EDL if shown) Practical Quantitation Limit Quality Control
MDL ML ND PQL QC RL	Method Detection Limit Minimum Level (Dioxin) Not detected at the reporting limit (or MDL or EDL if shown) Practical Quantitation Limit Quality Control Reporting Limit

Method Summary

Client: Tetra Tech EM Inc. Project/Site: Waste Characterization

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL SL
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL SL
8015B	Nonhalogenated Organic Compounds - Direct Injection (GC)	SW846	TAL SL
8081B	Organochlorine Pesticides (GC)	SW846	TAL SL
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL SL
8151A	Herbicides (GC)	SW846	TAL SL
6010C	Metals (ICP)	SW846	TAL SL
7470A	Mercury (CVAA)	SW846	TAL SL
1010A	Ignitability, Pensky-Martens Closed Cup Method	SW846	TAL SL
9012	Cyanide, Reactive	SW846	TAL SL
9034	Sulfide, Reactive	SW846	TAL SL
9045D	pH	SW846	TAL SL
9066	Phenolics, Total Recoverable	SW846	TAL SL
9095B	Paint Filter	SW846	TAL SL
Moisture	Percent Moisture	EPA	TAL SL

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Sample Summary

Client: Tetra Tech EM Inc. Project/Site: Waste Characterization

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
160-304-1	SFPR-002	Solid	07/16/12 00:00	07/17/12 11:00

Client Sample ID: SFPR-002

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Ргер Туре
Methoxychlor	0.097	Jp	1.0	0.050	ug/L	1	8081B	TCLP
Barium	720		130	9.9	ug/L	1	6010C	TCLP
Lead	5.3	J	250	3.2	ug/L	1	6010C	TCLP
Flashpoint	>60		25	25	Degrees C	1	1010A	Total/NA
pH	5.69		0.100	0.100	SU	1	9045D	Total/NA
Free Liquid	pass		0.10	0.10	NONE	1	9095B	Total/NA

TestAmerica Job ID: 160-304-1

Lab Sample ID: 160-304-1

Client Sample ID: SFPR-002

Date Collected: 07/16/12 00:00 Date Received: 07/17/12 11:00

Analyte	Result Qu	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND *	22	7.0	ug/Kg	₩	07/18/12 12:00	07/19/12 01:15	1
Benzene	ND	5.4	0.27	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
n-Butyl alcohol	ND *	110	18	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
Methyl Ethyl Ketone	ND	22	2.1	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
Carbon disulfide	ND	5.4	0.75	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
Carbon tetrachloride	ND	5.4	0.55	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
Chlorobenzene	ND	5.4	0.41	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
Cyclohexanone	ND	110	19	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
1,2-Dichlorobenzene	ND	5.4	0.30	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
Ethyl acetate	ND *	22	9.6	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
Ethylbenzene	ND	5.4	0.33	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
Ethyl ether	ND	11	2.4	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.4	1.8	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
Isobutanol	ND *	220	28	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
Methylene Chloride	ND	5.4	1.7	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
methyl isobutyl ketone	ND	22	0.79	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
2-Nitropropane	ND *	11	2.0	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
Tetrachloroethylene	ND	5.4	0.35	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
Toluene	ND	5.4	0.76	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
1,1,1-Trichloroethane	ND	5.4	0.47	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
1,1,2-Trichloroethane	ND	5.4	0.62	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
Trichloroethylene	ND	5.4	0.42	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
Trichlorofluoromethane	ND	5.4	0.54	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
Xylenes, Total	ND	11	0.92	ug/Kg	¢	07/18/12 12:00	07/19/12 01:15	1
0	% Decevery Ou	elifier limite				D	Amelymod	

Surrogate	%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111	67 - 147	07/18/12 12:00	07/19/12 01:15	1
1,2-Dichloroethane-d4 (Surr)	116	51 - 150	07/18/12 12:00	07/19/12 01:15	1
Toluene-d8 (Surr)	108	49 - 150	07/18/12 12:00	07/19/12 01:15	1
Dibromofluoromethane (Surr)	103	49 _ 150	07/18/12 12:00	07/19/12 01:15	1

Method: 8260C - Volatile Organic Compounds by GC/MS - TCLP

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND	50	3.7	ug/L			07/22/12 19:09	1
1,2-Dichloroethane	ND	50	3.7	ug/L			07/22/12 19:09	1
Methyl Ethyl Ketone	ND	50	3.9	ug/L			07/22/12 19:09	1
Benzene	ND	50	2.5	ug/L			07/22/12 19:09	1
Carbon tetrachloride	ND	50	3.6	ug/L			07/22/12 19:09	1
Chlorobenzene	ND	50	3.8	ug/L			07/22/12 19:09	1
Chloroform	ND	50	0.92	ug/L			07/22/12 19:09	1
Tetrachloroethylene	ND	50	2.8	ug/L			07/22/12 19:09	1
Trichloroethylene	ND	50	2.9	ug/L			07/22/12 19:09	1
Vinyl chloride	ND	100	4.3	ug/L			07/22/12 19:09	1

Surrogate	%Recovery Qua	ualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101	84 - 120		07/22/12 19:09	1
1,2-Dichloroethane-d4 (Surr)	103	83 - 117		07/22/12 19:09	1
Toluene-d8 (Surr)	103	85 - 115		07/22/12 19:09	1
Dibromofluoromethane (Surr)	102	85 - 115		07/22/12 19:09	1

Lab Sample ID: 160-304-1 Matrix: Solid Percent Solids: 91.9

13

Client Sample Results

Client Sample ID: SFPR-002 Date Collected: 07/16/12 00:00 Date Received: 07/17/12 11:00

Lab Sample ID: 160-304-1 Matrix: Solid Percent Solids: 91.9

Method: 8270D - Semivolatile Analyte		Qualifier	RL	МО	Unit	D	Prepared	Analyzed	Dil F
p-Cresol	ND		360		ug/Kg	— -	07/19/12 12:26	07/22/12 04:00	
n & p - Cresol	ND		720		ug/Kg	¢	07/19/12 12:26	07/22/12 04:00	
Vitrobenzene	ND		360		ug/Kg	¢	07/19/12 12:26	07/22/12 04:00	
Pyridine	ND		720		ug/Kg		07/19/12 12:20	07/22/12 04:00	
yndine	ND		720	12	uynty	.,.	07719/12 12.20	07722/12 04:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
P-Fluorophenol (Surr)	72		44 - 95				07/19/12 12:26	07/22/12 04:00	
4,6-Tribromophenol (Surr)	83		44 - 117				07/19/12 12:26	07/22/12 04:00	
litrobenzene-d5 (Surr)	76		46 - 98				07/19/12 12:26	07/22/12 04:00	
henol-d5 (Surr)	76		46 - 99				07/19/12 12:26	07/22/12 04:00	
erphenyl-d14 (Surr)	83		47 - 127				07/19/12 12:26	07/22/12 04:00	
-Fluorobiphenyl (Surr)	77		50 - 103				07/19/12 12:26	07/22/12 04:00	
Method: 8270D - Semivolatile		nds (GC/MS Qualifier	6) - TCLP RL	МПІ	Unit	D	Prepared	Analyzed	Dil F
,4-Dichlorobenzene	<u></u>	Quaimer	<u>50</u>		ug/L		07/20/12 15:23	07/22/12 02:21	
4-Dinitrotoluene	ND		50		ug/L		07/20/12 15:23	07/22/12 02:21	
exachlorobenzene	ND		50		-		07/20/12 15:23	07/22/12 02:21	
	ND				ug/L			07/22/12 02:21	
exachloro-1,3-butadiene			50		ug/L		07/20/12 15:23		
exachloroethane	ND		50		ug/L		07/20/12 15:23	07/22/12 02:21	
Cresol	ND		50		ug/L		07/20/12 15:23	07/22/12 02:21	
& p - Cresol	ND		100		ug/L		07/20/12 15:23	07/22/12 02:21	
itrobenzene	ND		50		ug/L		07/20/12 15:23	07/22/12 02:21	
entachlorophenol	ND		250		ug/L		07/20/12 15:23	07/22/12 02:21	
yridine	ND		100		ug/L		07/20/12 15:23	07/22/12 02:21	
,4,5-Trichlorophenol	ND		50		ug/L		07/20/12 15:23	07/22/12 02:21	
,4,6-Trichlorophenol	ND		50	10	ug/L		07/20/12 15:23	07/22/12 02:21	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil I
4,6-Tribromophenol (Surr)	73		50 - 101				07/20/12 15:23	07/22/12 02:21	
itrobenzene-d5 (Surr)	64		45 _ 102				07/20/12 15:23	07/22/12 02:21	
henol-d5 (Surr)	51		40 _ 95				07/20/12 15:23	07/22/12 02:21	
erphenyl-d14 (Surr)	98		56 - 118				07/20/12 15:23	07/22/12 02:21	
-Fluorobiphenyl (Surr)	59		42 - 95				07/20/12 15:23	07/22/12 02:21	
-Fluorophenol (Surr)	56		38 - 98				07/20/12 15:23	07/22/12 02:21	
Method: 8015B - Nonhalogen		Dipounds - Di Qualifier	irect Injection (RL		Unit	D	Prepared	Analyzed	Dil I
lethanol	ND		540		mg/Kg	— -		07/23/12 16:00	
					5 5				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
sobutyl alcohol	54		40 - 140					07/23/12 16:00	
lethod: 8081B - Organochlor	rina Pasticidas (G								
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
	ND		0.50	0.015			07/23/12 14:45	07/23/12 22:07	
amma-BHC (Lindane)			0.50	0.050			07/23/12 14:45	07/23/12 22:07	
	ND				-		07/23/12 14:45	07/23/12 22:07	
ndrin	ND ND		0.50	0.015	ug/L				
ndrin Ieptachlor	ND			0.015 0.050					
ndrin leptachlor leptachlor epoxide	ND ND	Jn	0.50	0.050	ug/L		07/23/12 14:45	07/23/12 22:07	
amma-BHC (Lindane) Endrin Heptachlor Heptachlor epoxide Aethoxychlor Foxaphene	ND	Jр			ug/L ug/L				

Client Sample ID: SFPR-002 Date Collected: 07/16/12 00:00

Lab Sample ID: 160-304-1 Matrix: Solid

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	72		69 - 131				07/23/12 14:45	07/23/12 22:07	1
Tetrachloro-m-xylene	84		74 - 121				07/23/12 14:45	07/23/12 22:07	1
- Method: 8082A - Polychlorinate	d Biphenyls (PC	Bs) by Gas	s Chromatograp	ohy					
Analyte		Qualifier	RL	-	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		36	9.5	ug/Kg	<u></u>	07/19/12 12:41	07/23/12 08:35	1
PCB-1221	ND		36	9.5	ug/Kg	¢	07/19/12 12:41	07/23/12 08:35	1
PCB-1232	ND		36	9.5	ug/Kg	¢	07/19/12 12:41	07/23/12 08:35	1
PCB-1242	ND		36	9.5	ug/Kg	\$	07/19/12 12:41	07/23/12 08:35	1
PCB-1248	ND		36	9.5	ug/Kg	⇔	07/19/12 12:41	07/23/12 08:35	1
PCB-1254	ND		36	6.0	ug/Kg	¢	07/19/12 12:41	07/23/12 08:35	1
PCB-1260	ND		36	6.0	ug/Kg	\$	07/19/12 12:41	07/23/12 08:35	1
Polychlorinated biphenyls, Total	ND		330	71	ug/Kg	¢	07/19/12 12:41	07/23/12 08:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	124		54 _ 150				07/19/12 12:41	07/23/12 08:35	1
_ Method: 8151A - Herbicides (G0	C) - TCL P								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND		40	20	ug/L		07/20/12 15:36	07/23/12 11:42	1
Silvex (2,4,5-TP)	ND		10	3.0	ug/L		07/20/12 15:36	07/23/12 11:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	120		56 - 147				07/20/12 15:36	07/23/12 11:42	1
_									
Method: 6010C - Metals (ICP) -									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		500	4.9	ug/L		07/20/12 12:32	07/23/12 09:55	1
Barium	720		130	9.9	ug/L		07/20/12 12:32	07/23/12 09:55	1
Cadmium	ND		13		ug/L		07/20/12 12:32	07/23/12 09:55	1
Chromium	ND		25		ug/L		07/20/12 12:32	07/23/12 09:55	1
Lead	5.3	J	250		ug/L		07/20/12 12:32	07/23/12 09:55	1
Selenium	ND		500	6.7	ug/L		07/20/12 12:32	07/23/12 09:55	1
Silver	ND		25	15	ug/L		07/20/12 12:32	07/23/12 09:55	1
Method: 7470A - Mercury (CVA	A) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		1.0	0.079	ug/L		07/23/12 08:04	07/23/12 12:24	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Flashpoint	>60		25	25	Degrees C			07/23/12 15:55	1
Cyanide, Reactive	ND		0.25	0.25	mg/Kg		07/23/12 15:32	07/24/12 12:31	1
Sulfide, Reactive	ND	*	22	22	mg/Kg		07/23/12 15:35	07/24/12 11:34	1
рН	5.69		0.100	0.100	SU		07/23/12 14:50	07/23/12 18:15	1
Phenols, Total	ND		5.4	4.8	mg/Kg	¢	07/20/12 13:15	07/24/12 16:13	1

Client Sample ID: Method Blank

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 160-6980/1 Matrix: Solid

matrix. C		
Analysis	Batch:	6980

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		20	6.5	ug/Kg			07/18/12 22:22	1
n-Butyl alcohol	ND		100	16	ug/Kg			07/18/12 22:22	1
Benzene	ND		5.0	0.25	ug/Kg			07/18/12 22:22	1
Methyl Ethyl Ketone	ND		20	1.9	ug/Kg			07/18/12 22:22	1
Carbon disulfide	ND		5.0	0.69	ug/Kg			07/18/12 22:22	1
Carbon tetrachloride	ND		5.0	0.51	ug/Kg			07/18/12 22:22	1
Chlorobenzene	ND		5.0	0.38	ug/Kg			07/18/12 22:22	1
Cyclohexanone	ND		100	18	ug/Kg			07/18/12 22:22	1
1,2-Dichlorobenzene	ND		5.0	0.28	ug/Kg			07/18/12 22:22	1
Ethyl acetate	ND		20	8.9	ug/Kg			07/18/12 22:22	1
Ethylbenzene	ND		5.0	0.30	ug/Kg			07/18/12 22:22	1
Ethyl ether	ND		10	2.2	ug/Kg			07/18/12 22:22	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	1.7	ug/Kg			07/18/12 22:22	1
Isobutanol	ND		200	25	ug/Kg			07/18/12 22:22	1
Methylene Chloride	ND		5.0	1.6	ug/Kg			07/18/12 22:22	1
methyl isobutyl ketone	ND		20	0.73	ug/Kg			07/18/12 22:22	1
2-Nitropropane	ND		10	1.8	ug/Kg			07/18/12 22:22	1
Tetrachloroethylene	ND		5.0	0.32	ug/Kg			07/18/12 22:22	1
Toluene	ND		5.0	0.70	ug/Kg			07/18/12 22:22	1
1,1,1-Trichloroethane	ND		5.0	0.43	ug/Kg			07/18/12 22:22	1
1,1,2-Trichloroethane	ND		5.0	0.57	ug/Kg			07/18/12 22:22	1
Trichloroethylene	ND		5.0	0.39	ug/Kg			07/18/12 22:22	1
Trichlorofluoromethane	ND		5.0	0.50	ug/Kg			07/18/12 22:22	1
Xylenes, Total	ND		10	0.85	ug/Kg			07/18/12 22:22	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			67 _ 147		07/18/12 22:22	1
1,2-Dichloroethane-d4 (Surr)	109		51 - 150		07/18/12 22:22	1
Toluene-d8 (Surr)	102		49 - 150		07/18/12 22:22	1
Dibromofluoromethane (Surr)	101		49 _ 150		07/18/12 22:22	1

Lab Sample ID: LCS 160-6980/2 Matrix: Solid

Analysis Batch: 6980

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acetone	50.0	65.0	*	ug/Kg		130	62 - 129
n-Butyl alcohol	500	629	*	ug/Kg		126	73 - 122
Benzene	50.0	51.2		ug/Kg		102	85 - 115
Methyl Ethyl Ketone	50.0	58.0		ug/Kg		116	73 _ 121
Carbon disulfide	50.0	55.3		ug/Kg		111	74 _ 118
Carbon tetrachloride	50.0	58.7		ug/Kg		117	85 _ 119
Chlorobenzene	50.0	48.7		ug/Kg		97	85 _ 115
Cyclohexanone	500	649		ug/Kg		130	64 - 140
1,2-Dichlorobenzene	50.0	48.1		ug/Kg		96	85 _ 115
Ethyl acetate	100	129	*	ug/Kg		129	73 _ 127
Ethylbenzene	50.0	53.7		ug/Kg		107	85 _ 117
Ethyl ether	100	132		ug/Kg		132	68 _ 135
Isobutanol	1000	1330	*	ug/Kg		133	75 - 124

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 160-6980/2

Matrix: Solid **Analysis Batch: 6980**

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methylene Chloride	50.0	50.3		ug/Kg		101	79 - 119
methyl isobutyl ketone	50.0	56.8		ug/Kg		114	75 ₋ 126
2-Nitropropane	100	165	*	ug/Kg		165	69 ₋ 130
Tetrachloroethylene	50.0	52.9		ug/Kg		106	85 - 118
Toluene	50.0	51.8		ug/Kg		104	83 - 118
1,1,1-Trichloroethane	50.0	52.9		ug/Kg		106	85 - 116
1,1,2-Trichloroethane	50.0	51.6		ug/Kg		103	85 ₋ 115
Trichloroethylene	50.0	51.3		ug/Kg		103	85 ₋ 115
Trichlorofluoromethane	50.0	57.6		ug/Kg		115	70 - 131
Xylenes, Total	150	152		ug/Kg		102	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			67 - 147
1,2-Dichloroethane-d4 (Surr)	110		51 - 150
Toluene-d8 (Surr)	107		49 - 150
Dibromofluoromethane (Surr)	110		49 - 150

100 100

Lab Sample ID: 160-304-1 MS Matrix: Solid

Analysis Batch: 6980									Prep Batch: 6	<mark>9</mark> 81
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	ND	*	54.4	68.3		ug/Kg	<u></u>	126	31 - 150	
n-Butyl alcohol	ND	*	544	514		ug/Kg	₽	95	32 - 150	
Benzene	ND		54.4	53.9		ug/Kg	₽	99	83 - 123	
Methyl Ethyl Ketone	ND		54.4	62.0		ug/Kg	₩	114	39 ₋ 150	
Carbon disulfide	ND		54.4	53.3		ug/Kg	₽	98	48 - 136	
Carbon tetrachloride	ND		54.4	54.7		ug/Kg	¢	100	62 - 139	
Chlorobenzene	ND		54.4	48.6		ug/Kg	\$	89	64 - 141	
Cyclohexanone	ND		544	660		ug/Kg	¢	121	36 - 150	
1,2-Dichlorobenzene	ND		54.4	47.7		ug/Kg	¢	88	73 - 134	
Ethyl acetate	ND	*	109	86.6		ug/Kg	\$	80	10 ₋ 150	
Ethylbenzene	ND		54.4	53.8		ug/Kg	₽	99	63 - 146	
Ethyl ether	ND		109	170	F	ug/Kg	₽	157	14 ₋ 150	
Isobutanol	ND	*	1090	1260		ug/Kg	¢	116	41 ₋ 150	
Methylene Chloride	ND		54.4	58.1		ug/Kg	₽	107	62 - 147	
methyl isobutyl ketone	ND		54.4	63.4		ug/Kg	₽	117	58 ₋ 150	
2-Nitropropane	ND	*	109	168	F	ug/Kg	¢	154	34 - 150	
Tetrachloroethylene	ND		54.4	49.6		ug/Kg	¢	91	51 ₋ 150	
Toluene	ND		54.4	54.2		ug/Kg	¢	100	64 ₋ 150	
1,1,1-Trichloroethane	ND		54.4	54.2		ug/Kg	¢	100	70 - 140	
1,1,2-Trichloroethane	ND		54.4	60.8		ug/Kg	¢	112	18 - 150	
Trichloroethylene	ND		54.4	50.4		ug/Kg	¢	93	74 - 125	
Trichlorofluoromethane	ND		54.4	56.4		ug/Kg	¢	104	57 _ 150	
Xylenes, Total	ND		163	150		ug/Kg	¢	92	70 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	117		67 - 147
1,2-Dichloroethane-d4 (Surr)	117		51 - 150

Client Sample ID: SFPR-002 Prep Type: Total/NA 1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 160-304-1 MS Matrix: Solid								Clie	ent Sample	ID: SFP ype: Tot	
Analysis Batch: 6980										p Batch	
Analysis Batch. 6960									FIE	p Batch	. 090
		MS									
Surrogate	%Recovery	Qualifier	Limits								
Toluene-d8 (Surr)	114		49 - 150								
Dibromofluoromethane (Surr)	114		49 - 150								
Lab Sample ID: 160-304-1 MSD								Clie	ent Sample	ID: SFP	R-002
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 6980									Pre	p Batch	: 69 81
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Acetone	ND	*	54.3	62.8		ug/Kg	<u>Å</u>	116	31 _ 150	8	20
n-Butyl alcohol	ND	*	543	477		ug/Kg	¢	88	32 - 150	8	20
Benzene	ND		54.3	54.2		ug/Kg	¢	100	83 - 123	0	20
Methyl Ethyl Ketone	ND		54.3	56.9		ug/Kg	\$	105	39 - 150	8	20
Carbon disulfide	ND		54.3	57.2		ug/Kg	¢	105	48 - 136	7	20
Carbon tetrachloride	ND		54.3	60.2		ug/Kg	¢	111	62 _ 139	10	20
Chlorobenzene	ND		54.3	49.9		ug/Kg	¢	92	64 - 141	3	20
Cyclohexanone	ND		543	696		ug/Kg	¢	128	36 _ 150	5	20
1,2-Dichlorobenzene	ND		54.3	49.2		ug/Kg	¢	91	73 - 134	3	20
Ethyl acetate	ND	*	109	49.7	F	ug/Kg	\$	46	10 _ 150	54	20
Ethylbenzene	ND		54.3	57.1		ug/Kg	¢	105	63 _ 146	6	20
Ethyl ether	ND		109	158		ug/Kg	¢	146	14 - 150	7	20
Isobutanol	ND	*	1090	1190		ug/Kg	¢	110	41 - 150	6	20
Methylene Chloride	ND		54.3	57.8		ug/Kg	¢	106	62 - 147	0	20
methyl isobutyl ketone	ND		54.3	62.0		ug/Kg	¢	114	58 - 150	2	20
2-Nitropropane	ND	*	109	166	F	ug/Kg	¢	152	34 - 150	1	20
Tetrachloroethylene	ND		54.3	53.7		ug/Kg	¢	99	51 - 150	8	20
Toluene	ND		54.3	59.0		ug/Kg	¢	109	64 _ 150	8	20
1,1,1-Trichloroethane	ND		54.3	56.9		ug/Kg	¢	105	70 - 140	5	20
1,1,2-Trichloroethane	ND		54.3	59.9		ug/Kg	¢	110	18 - 150	1	20
Trichloroethylene	ND		54.3	52.2		ug/Kg	¢	96	74 - 125	3	20
Trichlorofluoromethane	ND		54.3	61.1		ug/Kg	¢	113	57 - 150	8	20
Xylenes, Total	ND		163	161		ug/Kg	₽	99	70 ₋ 130	7	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	123		67 _ 147								

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	123		67 - 147
1,2-Dichloroethane-d4 (Surr)	111		51 _ 150
Toluene-d8 (Surr)	115		49 - 150
Dibromofluoromethane (Surr)	108		49 _ 150

Lab Sample ID: LCS 160-6982/4 Matrix: Solid

Analysis Batch: 6982

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
1,1-Dichloroethene	500	505	ug/L		101	79 - 117	
1,2-Dichloroethane	500	476	ug/L		95	80 - 115	
Benzene	500	477	ug/L		95	85 _ 115	
Methyl Ethyl Ketone	500	489	ug/L		98	64 _ 117	
Carbon tetrachloride	500	574	ug/L		115	79 ₋ 119	
Chlorobenzene	500	460	ug/L		92	85 - 115	

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 160-6982/4
Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: TCLP

Analy	/eie	Batch:	6982
Allal	1212	Datur.	0302

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloroform		464		ug/L		93	85 - 115
Vinyl chloride	500	486		ug/L		97	72 - 136
Tetrachloroethylene	500	519		ug/L		104	79 ₋ 116
Trichloroethylene	500	492		ug/L		98	85 - 115

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		84 - 120
1,2-Dichloroethane-d4 (Surr)	101		83 - 117
Toluene-d8 (Surr)	105		85 - 115
Dibromofluoromethane (Surr)	105		85 - 115

Lab Sample ID: LB 160-6863/1-A LB Matrix: Solid

Analysis Batch: 6982

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		50	3.7	ug/L			07/22/12 18:44	1
1,2-Dichloroethane	ND		50	3.7	ug/L			07/22/12 18:44	1
Benzene	ND		50	2.5	ug/L			07/22/12 18:44	1
Methyl Ethyl Ketone	ND		50	3.9	ug/L			07/22/12 18:44	1
Carbon tetrachloride	ND		50	3.6	ug/L			07/22/12 18:44	1
Chlorobenzene	ND		50	3.8	ug/L			07/22/12 18:44	1
Chloroform	ND		50	0.92	ug/L			07/22/12 18:44	1
Vinyl chloride	ND		100	4.3	ug/L			07/22/12 18:44	1
Tetrachloroethylene	ND		50	2.8	ug/L			07/22/12 18:44	1
Trichloroethylene	ND		50	2.9	ug/L			07/22/12 18:44	1

I		LD	LD					
	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	101		84 - 120	-		07/22/12 18:44	1
	1,2-Dichloroethane-d4 (Surr)	102		83 - 117			07/22/12 18:44	1
	Toluene-d8 (Surr)	102		85 - 115			07/22/12 18:44	1
	Dibromofluoromethane (Surr)	100		85 - 115			07/22/12 18:44	1

Lab Sample ID: 160-304-1 MS Matrix: Solid Analysis Batch: 6982

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 1,1-Dichloroethene ND 500 527 105 80 - 115 ug/L 1,2-Dichloroethane ND 500 502 ug/L 100 85 - 115 Benzene ND 500 504 101 ug/L 85 - 115 Methyl Ethyl Ketone ND 500 449 ug/L 90 67 - 117 Carbon tetrachloride ND 500 597 F 119 79 - 117 ug/L Chlorobenzene ND 500 477 ug/L 95 85 - 115 ug/L Chloroform ND 500 499 100 85 - 115 ND 500 466 93 75 - 132 Vinyl chloride ug/L Tetrachloroethylene ND 500 537 ug/L 107 82 - 115 Trichloroethylene ND 500 511 ug/L 102 84 - 115

07/22/12 18:44 1 Client Sample ID: SFPR-002

Prep Type: TCLP

Client Sample ID: SFPR-002

Prep Type: TCLP

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 160-304-1 MS Matrix: Solid

Analysis Batch: 6982

	MS	MS			
Surrogate	%Recovery	Qualifier	Limits		
4-Bromofluorobenzene (Surr)			84 - 120		
1,2-Dichloroethane-d4 (Surr)	104		83 - 117		
Toluene-d8 (Surr)	104		85 - 115		
Dibromofluoromethane (Surr)	106		85 - 115		

Lab Sample ID: 160-304-1 MSD

Matrix: Solid Analysis Batch: 6982

Toluene-d8 (Surr)

Dibromofluoromethane (Surr)

Analysis Batch: 6982											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND		500	497		ug/L		99	80 _ 115	6	20
1,2-Dichloroethane	ND		500	505		ug/L		101	85 _ 115	0	20
Benzene	ND		500	493		ug/L		99	85 - 115	2	20
Methyl Ethyl Ketone	ND		500	546		ug/L		109	67 ₋ 117	20	20
Carbon tetrachloride	ND		500	571		ug/L		114	79 - 117	4	20
Chlorobenzene	ND		500	469		ug/L		94	85 _ 115	2	20
Chloroform	ND		500	482		ug/L		96	85 _ 115	3	20
Vinyl chloride	ND		500	478		ug/L		96	75 - 132	3	20
Tetrachloroethylene	ND		500	525		ug/L		105	82 _ 115	2	20
Trichloroethylene	ND		500	499		ug/L		100	84 - 115	2	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	100		84 - 120								
1,2-Dichloroethane-d4 (Surr)	103		83 - 117								

85 ₋ 115 85 - 115

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

102

104

Lab Sample ID: MB 160-6768/1-A Matrix: Solid Analysis Batch: 7018	МВ	мв					Client Sa	mple ID: Metho Prep Type: 1 Prep Bato	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Cresol	ND		330	33	ug/Kg		07/19/12 12:26	07/22/12 00:09	1
m & p - Cresol	ND		660	67	ug/Kg		07/19/12 12:26	07/22/12 00:09	1
Nitrobenzene	ND		330	33	ug/Kg		07/19/12 12:26	07/22/12 00:09	1
Pyridine	ND		660	67	ug/Kg		07/19/12 12:26	07/22/12 00:09	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	73		44 _ 117				07/19/12 12:26	07/22/12 00:09	1
Nitrobenzene-d5 (Surr)	78		46 - 98				07/19/12 12:26	07/22/12 00:09	1
Phenol-d5 (Surr)	83		46 _ 99				07/19/12 12:26	07/22/12 00:09	1
Terphenyl-d14 (Surr)	101		47 - 127				07/19/12 12:26	07/22/12 00:09	1
2-Fluorobiphenyl (Surr)	77		50 _ 103				07/19/12 12:26	07/22/12 00:09	1
2-Fluorophenol (Surr)	79		44 - 95				07/19/12 12:26	07/22/12 00:09	1

Client Sample ID: SFPR-002 Prep Type: TCLP

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 160-6768/2-A Matrix: Solid Analysis Batch: 7018					Client	Sample	Prep Ty	ntrol Sampl /pe: Total/N/) Batch: 676
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
o-Cresol	3330	2430		ug/Kg		73	53 - 94	
m & p - Cresol	3330	2750		ug/Kg		83	50 ₋ 108	
Nitrobenzene	3330	2320		ug/Kg		70	51 ₋ 95	
LCS LC	s							

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	83		44 - 117
Nitrobenzene-d5 (Surr)	74		46 - 98
Phenol-d5 (Surr)	76		46 - 99
Terphenyl-d14 (Surr)	99		47 _ 127
2-Fluorobiphenyl (Surr)	76		50 - 103
2-Fluorophenol (Surr)	73		44 - 95

Lab Sample ID: 160-304-1 MS
Matrix: Solid
Analysis Batch: 7018

Analysis Batch: 7018									Pre	p Batch:	6768
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
o-Cresol	ND		3630	2520		ug/Kg	<u>\$</u>	70	45 - 92		
m & p - Cresol	ND		3630	2890		ug/Kg	¢	80	46 - 103		
Nitrobenzene	ND		3630	2370		ug/Kg	¢	65	43 - 92		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
2 / 6 Tribromonhenol (Surr)			11 117								

2,4,6-Tribromophenol (Surr)	84	44 - 117
Nitrobenzene-d5 (Surr)	70	46 _ 98
Phenol-d5 (Surr)	74	46 - 99
Terphenyl-d14 (Surr)	78	47 - 127
2-Fluorobiphenyl (Surr)	75	50 _ 103
2-Fluorophenol (Surr)	68	44 _ 95

Lab Sample ID: 160-304-1 MSD Matrix: Solid

US EPA ARCHIVE DOCUMENT

Analysis Batch: 7018									Pre	p Batch	: 676 8
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
o-Cresol	ND		3630	2790		ug/Kg	<u>\$</u>	77	45 - 92	10	30
m & p - Cresol	ND		3630	3150		ug/Kg	¢	87	46 - 103	8	30
Nitrobenzene	SampleSampleSpikeMSDMSD%Rec.ResultQualifierAddedResultQualifierUnitD%Rec.LimitsNDND36302790ug/Kg \bigcirc 8745 - 9245 - 92solND36303150ug/Kg \bigcirc 8746 - 103neND36302570ug/Kg \bigcirc 7143 - 92MSDMSDMSDKecoveryQualifierLimitsmophenol (Surr)8744 - 117ne-d5 (Surr)7446 - 98Surr)7846 - 991/14 (Surr)8047 - 127henyl (Surr)7750 - 103	8	30								
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
2,4,6-Tribromophenol (Surr)	87		44 - 117								
Nitrobenzene-d5 (Surr)	74		46 - 98								
Phenol-d5 (Surr)	78		46 - 99								
Terphenyl-d14 (Surr)	80		47 _ 127								
2-Fluorobiphenyl (Surr)	77		50 _ 103								
2-Fluorophenol (Surr)	71		44 - 95								

```
68 1
```

Client Sample ID: SFPR-002 Prep Type: Total/NA Prep Batch: 6768

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 160-6958/2-A Matrix: Solid

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Pren Batch: 6958

Analysis Batch: 7018							Prep	Batch: 6958		
	Spike	LCS	LCS				%Rec.			
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits			
1,4-Dichlorobenzene	500	351		ug/L		70	40 - 93			
2,4-Dinitrotoluene	500	351		ug/L		70	49 _ 95			
Hexachlorobenzene	500	405		ug/L		81	46 - 87			
Hexachloro-1,3-butadiene	500	329		ug/L		66	30 ₋ 95			
Hexachloroethane	500	344		ug/L		69	25 - 97			
o-Cresol	500	371		ug/L		74	51 ₋ 99			
m & p - Cresol	1000	750		ug/L		75	53 - 96			
Nitrobenzene	500	356		ug/L		71	45 ₋ 95			
Pentachlorophenol	500	363		ug/L		73	35 _ 98			
Pyridine	500	202		ug/L		40	10 - 72			
2,4,5-Trichlorophenol	500	364		ug/L		73	47 _ 92			
2,4,6-Trichlorophenol	500	362		ug/L		72	47 _ 88			

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	78		50 _ 101
Nitrobenzene-d5 (Surr)	71		45 - 102
Phenol-d5 (Surr)	63		40 - 95
Terphenyl-d14 (Surr)	101		56 _ 118
2-Fluorobiphenyl (Surr)	64		42 - 95
2-Fluorophenol (Surr)	66		38 - 98

Lab Sample ID: LB 160-6862/1-B LB Matrix: Solid

Analysis Batch: 7018

EPA ARCHIVE DOCUMENT

Ľ

	LB	LB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		50	5.0	ug/L		07/20/12 15:23	07/21/12 23:03	1
2,4-Dinitrotoluene	ND		50	5.0	ug/L		07/20/12 15:23	07/21/12 23:03	1
Hexachlorobenzene	ND		50	5.0	ug/L		07/20/12 15:23	07/21/12 23:03	1
Hexachloro-1,3-butadiene	ND		50	5.0	ug/L		07/20/12 15:23	07/21/12 23:03	1
Hexachloroethane	ND		50	5.0	ug/L		07/20/12 15:23	07/21/12 23:03	1
o-Cresol	ND		50	10	ug/L		07/20/12 15:23	07/21/12 23:03	1
m & p - Cresol	ND		100	5.0	ug/L		07/20/12 15:23	07/21/12 23:03	1
Nitrobenzene	ND		50	5.0	ug/L		07/20/12 15:23	07/21/12 23:03	1
Pentachlorophenol	ND		250	10	ug/L		07/20/12 15:23	07/21/12 23:03	1
Pyridine	ND		100	25	ug/L		07/20/12 15:23	07/21/12 23:03	1
2,4,5-Trichlorophenol	ND		50	10	ug/L		07/20/12 15:23	07/21/12 23:03	1
2,4,6-Trichlorophenol	ND		50	10	ug/L		07/20/12 15:23	07/21/12 23:03	1

	LB	LB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	79		50 - 101	07/20/12 15:23	07/21/12 23:03	1
Nitrobenzene-d5 (Surr)	72		45 _ 102	07/20/12 15:23	07/21/12 23:03	1
Phenol-d5 (Surr)	60		40 - 95	07/20/12 15:23	07/21/12 23:03	1
Terphenyl-d14 (Surr)	104		56 _ 118	07/20/12 15:23	07/21/12 23:03	1
2-Fluorobiphenyl (Surr)	67		42 _ 95	07/20/12 15:23	07/21/12 23:03	1
2-Fluorophenol (Surr)	65		38 - 98	07/20/12 15:23	07/21/12 23:03	1

Prep Batch: 6958

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 160-304-1 MS								Clie	ent Sample ID: SFPR-002
Matrix: Solid									Prep Type: TCLF
Analysis Batch: 7018									Prep Batch: 6958
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,4-Dichlorobenzene	ND		500	308		ug/L		62	35 - 93
2,4-Dinitrotoluene	ND		500	339		ug/L		68	52 - 100
Hexachlorobenzene	ND		500	408		ug/L		82	46 _ 90
Hexachloro-1,3-butadiene	ND		500	298		ug/L		60	29 - 96
Hexachloroethane	ND		500	295		ug/L		59	23 - 104
o-Cresol	ND		500	322		ug/L		64	44 - 106
m & p - Cresol	ND		1000	640		ug/L		64	49 - 100
Nitrobenzene	ND		500	326		ug/L		65	44 - 102
Pentachlorophenol	ND		500	336		ug/L		67	35 - 108
Pyridine	ND		500	215		ug/L		43	10 - 80
2,4,5-Trichlorophenol	ND		500	334		ug/L		67	47 _ 96
2,4,6-Trichlorophenol	ND		500	332		ug/L		66	48 - 96
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
2,4,6-Tribromophenol (Surr)	77		50 - 101						

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	77		50 - 101
Nitrobenzene-d5 (Surr)	67		45 - 102
Phenol-d5 (Surr)	53		40 - 95
Terphenyl-d14 (Surr)	97		56 - 118
2-Fluorobiphenyl (Surr)	62		42 - 95
2-Fluorophenol (Surr)	57		38 - 98

Lab Sample ID: 160-304-1 MSD Matrix: Solid

EPA ARCHIVE DOCUMENT

Analysis Batch: 7018 Prep Batch: 6958 MSD MSD RPD Sample Sample Spike %Rec. Analyte Result Qualifier Added **Result Qualifier** Unit D %Rec Limits RPD Limit 1,4-Dichlorobenzene ND 500 353 ug/L 71 35 - 93 13 20 2,4-Dinitrotoluene ND 500 380 76 52 - 100 20 ug/L 12 Hexachlorobenzene ND 500 435 ug/L 87 46 - 90 6 20 Hexachloro-1,3-butadiene ND 500 340 68 29 - 96 13 20 ug/L Hexachloroethane ND 500 341 ug/L 68 23 - 104 14 20 o-Cresol ND 500 362 72 44 - 106 12 20 ug/L ND 1000 725 72 49 - 100 m & p - Cresol ug/L 12 20 ND 500 Nitrobenzene 361 ug/L 72 44 - 102 10 20 Pentachlorophenol ND 500 72 35 - 108 359 ug/L 7 20 Pyridine ND 500 265 F 53 10 - 80 21 20 ug/L ND 500 75 2,4,5-Trichlorophenol 375 ug/L 47 - 96 12 20 2,4,6-Trichlorophenol ND 500 374 75 48 - 96 12 20 ug/L Men Mer

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	81		50 - 101
Nitrobenzene-d5 (Surr)	74		45 _ 102
Phenol-d5 (Surr)	60		40 - 95
Terphenyl-d14 (Surr)	101		56 _ 118
2-Fluorobiphenyl (Surr)	70		42 _ 95
2-Fluorophenol (Surr)	64		38 - 98

Client Sample ID: SFPR-002 Prep Type: TCLP **US EPA ARCHIVE DOCUMENT**

Methoxychlor

Toxaphene

Method: 8015B - Nonhalogenated Organic Compounds - Direct Injection (GC)

Lab Sample ID: MB 160-7049/1-/ Matrix: Solid	A								Client Sa	ample ID: Meth Prep Type	
Analysis Batch: 7052										Thep Type	. 0010010
Analysis Datch. 1052		MB MB									
Analyte	R	esult Qualifier		RL	MDL Unit		D	Р	repared	Analyzed	Dil Fac
Methanol	N	ND Quanner		500	160 mg/ł			F	repareu	07/23/12 14:53	- <u> </u>
		ND		500	100 mg/i	\y				07723/12 14.33	I
		MB MB									
Surrogate	%Reco	overy Qualifier	Limits	;				P	repared	Analyzed	Dil Fac
Isobutyl alcohol		105	40 - 14	40						07/23/12 14:53	1
_ Lab Sample ID: LCS 160-7049/2	-0						C	liont	Sample	ID: Lab Contro	ol Samole
Matrix: Solid	~						Ŭ	nem	oumpie	Prep Type	
Analysis Batch: 7052										пер туре	. Soluble
Analysis Batch. 7052			Spike	I C	S LCS					%Rec.	
Analyte			Added		t Qualifier	Unit		D	%Rec	Limits	
Methanol			495	52		mg/Kg				75 - 125	
menanor			-100	52	0	mg/rxy			107	10-120	
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
Isobutyl alcohol	97		40 - 140								
-											
Lab Sample ID: 160-304-1 MS									Clier	nt Sample ID: S	SFPR-002
Matrix: Solid										Prep Type	: Soluble
Analysis Batch: 7052											
	Sample	Sample	Spike	M	S MS					%Rec.	
Analyte	Result	Qualifier	Added	Resu	t Qualifier	Unit		D	%Rec	Limits	
Methanol	ND		539	58	0	mg/Kg		<u> </u>	108	66 - 131	
						0 0					
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
Isobutyl alcohol	100		40 - 140								
Lab Sample ID: 160-304-1 MSD									Clier	nt Sample ID: S	EDB-002
Matrix: Solid									oner	Prep Type	
Analysis Batch: 7052										пер туре	. Joiuble
Analysis Batch. 1032	Sample	Sample	Spike	MS	D MSD					%Rec.	RPD
Analyte		Qualifier	Added		t Qualifier	Unit		D	%Rec		PD Limit
Methanol	ND		539	56	_	mg/Kg		- 🕁	105	66 - 131	
	ND		559	50	5	my/rxy		.,.	105	00 - 131	5 50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Isobutyl alcohol	97		40 - 140								
	anin - D	4 ald /01	••								
Method: 8081B - Organochl	orine Pes	sticides (GC	;)								
 Lab Sample ID: MB 160-7009/1-/	Α								Client Sa	ample ID: Meth	od Blank
Matrix: Solid										Prep Type:	
Analysis Batch: 7050											tch: 7009
Analysis Batch. 1000		МВ МВ								Перва	
Analyte	D	esult Qualifier		RL	MDL Unit		D	P	repared	Analyzed	Dil Fac
gamma-BHC (Lindane)	ĸ	ND Quaimer		0.50	0.015 ug/L		_		3/12 14:45	07/23/12 21:06	
Endrin		ND		0.50 0.50	0.015 ug/L 0.050 ug/L				3/12 14:45	07/23/12 21:06	
LIQUII			L		0.000 ug/L			0//2	J/12 14.45	01123112 21.00	- I
Hantaphlar			~	50	0.015"			07/0	2/12 14.45	07/02/40 04.00	
Heptachlor		ND		0.50	0.015 ug/L				3/12 14:45	07/23/12 21:06	1
Heptachlor Heptachlor epoxide Methoxychlor		ND ND	C	0.50 0.50 1.0	0.015 ug/L 0.050 ug/L			07/2	3/12 14:45 3/12 14:45 3/12 14:45	07/23/12 21:06 07/23/12 21:06 07/23/12 21:06	1

1

1

1

07/23/12 21:06

07/23/12 21:06

07/23/12 14:45

07/23/12 14:45

1.0

20

0.050 ug/L

0.050 ug/L

ND

ND

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Matrix: Solid Analysis Batch: 7050 Analyte											ample ID: M Prep Ty		
												Batch	
Analyte		МВ М	в								Tiop	Baton	
	R	esult Q	ualifier	RL		MDL I	Jnit	D	Pr	epared	Analyze	d	Dil
Technical Chlordane		ND		5.0		0.20	ıg/L		07/23	8/12 14:45	07/23/12 21	1:06	
		мв м	В										
Surrogate	%Reco	overy Q		Limits					Pr	epared	Analyze	d	Dil
DCB Decachlorobiphenyl (Surr)		63 X		69 - 131					07/23	3/12 14:45	07/23/12 21	1:06	
Tetrachloro-m-xylene		78		74 - 121					07/23	3/12 14:45	07/23/12 21	1:06	
Lab Sample ID: LCS 160-700)9/2-A							с	lient	Sample	ID: Lab Cor	ntrol S	am
Matrix: Solid											Prep Ty		
Analysis Batch: 7050											Prep	Batch	n: 70
-				Spike	LCS	LCS					%Rec.		
Analyte			A	dded	Result	Qualif	ier Unit		D	%Rec	Limits		
gamma-BHC (Lindane)				5.00	4.47		ug/L			89	81 - 135		
Endrin				5.00	4.90		ug/L			98	79 - 140		
Heptachlor				5.00	4.51		ug/L			90	65 - 140		
Heptachlor epoxide				5.00	4.25		ug/L			85	79 - 132		
Methoxychlor				5.00	4.67		ug/L			93	74 - 138		
•		LCS											
Surrogate	%Recovery	Qualifie		nits									
DCB Decachlorobiphenyl (Surr) Tetrachloro-m-xylene	70 79			- 131 - 121									
Analysis Batch: 7050				Spike	LCSD	LCSD					Prep %Rec.	Batch	n: 7(F
Analyte				dded	Result	Qualif	ier Unit		D	%Rec	Limits		
				<u> </u>	4.42		ug/L				LIIIIIII	RPD	L
gamma-BHC (Lindane)				5.00	4.42					88	81 - 135	RPD 1	
				5.00 5.00	4.42 4.95		ug/L			88 99			
gamma-BHC (Lindane)							ug/L ug/L				81 - 135	1	
gamma-BHC (Lindane) Endrin				5.00	4.95		-			99	81 - 135 79 - 140	1	
gamma-BHC (Lindane) Endrin Heptachlor				5.00 5.00	4.95 3.96		ug/L			99 79	81 - 135 79 ₋ 140 65 ₋ 140	1 1 13	
gamma-BHC (Lindane) Endrin Heptachlor Heptachlor epoxide	1000	LCSD		5.00 5.00 5.00	4.95 3.96 4.29		ug/L ug/L			99 79 86	81 - 135 79 - 140 65 - 140 79 - 132	1 1 13 1	
gamma-BHC (Lindane) Endrin Heptachlor Heptachlor epoxide Methoxychlor		LCSD	ar li	5.00 5.00 5.00 5.00	4.95 3.96 4.29		ug/L ug/L			99 79 86	81 - 135 79 - 140 65 - 140 79 - 132	1 1 13 1	
gamma-BHC (Lindane) Endrin Heptachlor Heptachlor epoxide Methoxychlor Surrogate	%Recovery			5.00 5.00 5.00 5.00	4.95 3.96 4.29		ug/L ug/L			99 79 86	81 - 135 79 - 140 65 - 140 79 - 132	1 1 13 1	
gamma-BHC (Lindane) Endrin Heptachlor Heptachlor epoxide Methoxychlor			69	5.00 5.00 5.00 5.00	4.95 3.96 4.29		ug/L ug/L			99 79 86	81 - 135 79 - 140 65 - 140 79 - 132	1 1 13 1	

Lab Sample ID: MB 160-6772/1-A Matrix: Solid Analysis Batch: 6993							Client Sa	mple ID: Metho Prep Type: 1 Prep Bato	Total/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		33	8.7	ug/Kg		07/19/12 12:41	07/23/12 07:58	1
PCB-1221	ND		33	8.7	ug/Kg		07/19/12 12:41	07/23/12 07:58	1
PCB-1232	ND		33	8.7	ug/Kg		07/19/12 12:41	07/23/12 07:58	1
PCB-1242	ND		33	8.7	ug/Kg		07/19/12 12:41	07/23/12 07:58	1
PCB-1248	ND		33	8.7	ug/Kg		07/19/12 12:41	07/23/12 07:58	1
PCB-1254	ND		33	5.5	ug/Kg		07/19/12 12:41	07/23/12 07:58	1

TestAmerica St. Louis 7/25/2012

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

	Α										Client S	ample ID: N	lethod	Blank
Matrix: Solid												Prep Ty	/pe: To	tal/NA
Analysis Batch: 6993												Prep	Batch	: 6772
		MB	MB											
Analyte	R	esult	Qualifier	RL		MDL	Unit		D	Pr	repared	Analyze	d	Dil Fac
PCB-1260		ND		33		5.5	ug/Kg			07/19	9/12 12:41	07/23/12 0	7:58	1
Polychlorinated biphenyls, Total		ND		300		66	ug/Kg			07/19	9/12 12:41	07/23/12 0	7:58	1
		ΜВ	мв											
Surrogate	%Reco		Qualifier	Limits						P	repared	Analyze	d	Dil Fac
DCB Decachlorobiphenyl (Surr)		89	Guunner								9/12 12:41	07/23/12 0		1
		00		04 - 100						0///	<i>, , , , , , , , , , , , , , , , , , , </i>	01720712 0	7.00	,
Lab Sample ID: LCS 160-6772/2	- A								С	lient	Sample	ID: Lab Co	ntrol S	ample
Matrix: Solid												Prep Ty		
Analysis Batch: 6993													Batch	
				Spike	LCS	LCS						%Rec.		
Analyte				Added	Result	Qual	lifier	Unit		D	%Rec	Limits		
PCB-1016				167	144			ug/Kg		· ·	86	76 - 131		
PCB-1260				167	153			ug/Kg			92	74 - 139		
		LCS												
Surrogate	%Recovery	Qual	lifier	Limits										
DCB Decachlorobiphenyl (Surr)	92			54 - 150										
Lab Sample ID: 160-304-1 MS											Clie	nt Sample I		P-002
Matrix: Solid											Olle	Prep Ty		
Analysis Batch: 6993													Batch	
Analysis Batch. 0000	Sample	C												
		Sam	ple	Spike	MS	MS								
Analyte				Spike Added		MS Qual	lifier	Unit		D	%Rec	%Rec.		
Analyte PCB-1016	Result			Added	Result		lifier	Unit ua/Ka		. D ☆ .	%Rec	%Rec. Limits		
Analyte PCB-1016 PCB-1260				•			lifier	ug/Kg				%Rec.		
PCB-1016	Result ND ND	Qual		Added	Result 179		lifier			<u></u>	99	%Rec. Limits 35 - 150		
PCB-1016	Result ND	Qual	ifier	Added	Result 179		lifier	ug/Kg		<u></u>	99	%Rec. Limits 35 - 150		
PCB-1016 PCB-1260 Surrogate	Result ND ND MS %Recovery	Qual	ifier	Added 181 181 <i>Limits</i>	Result 179		lifier	ug/Kg		<u></u>	99	%Rec. Limits 35 - 150		
PCB-1016 PCB-1260	Result ND ND MS	Qual	ifier	Added	Result 179		lifier	ug/Kg		<u></u>	99	%Rec. Limits 35 - 150		
PCB-1016 PCB-1260 Surrogate DCB Decachlorobiphenyl (Surr)	Result ND ND MS %Recovery	Qual	ifier	Added 181 181 <i>Limits</i>	Result 179		lifier	ug/Kg		<u></u>	99 86	%Rec. Limits 35 - 150 43 - 150		
PCB-1016 PCB-1260 Surrogate DCB Decachlorobiphenyl (Surr) Lab Sample ID: 160-304-1 MSD	Result ND ND MS %Recovery	Qual	ifier	Added 181 181 <i>Limits</i>	Result 179		lifier	ug/Kg		<u></u>	99 86	%Rec. Limits 35 - 150 43 - 150	D: SFF	
PCB-1016 PCB-1260 Surrogate DCB Decachlorobiphenyl (Surr) Lab Sample ID: 160-304-1 MSD Matrix: Solid	Result ND ND MS %Recovery	Qual	ifier	Added 181 181 <i>Limits</i>	Result 179		lifier	ug/Kg		<u></u>	99 86	%Rec. Limits 35 - 150 43 - 150 ht Sample I Prep Ty	D: SFF /pe: To	tal/NA
PCB-1016 PCB-1260 Surrogate DCB Decachlorobiphenyl (Surr) Lab Sample ID: 160-304-1 MSD	Result ND ND <i>MS</i> %Recovery 114	Qual MS Qual	lifier	Added 181 181 <i>Limits</i> 54 - 150	Result 179 157	Qual		ug/Kg		<u></u>	99 86	%Rec. Limits 35 - 150 43 - 150 nt Sample I Prep Ty Prep	D: SFF	tal/NA : 6772
PCB-1016 PCB-1260 Surrogate DCB Decachlorobiphenyl (Surr) Lab Sample ID: 160-304-1 MSD Matrix: Solid Analysis Batch: 6993	Result ND ND <i>MS</i> %Recovery 114 Sample	Qual MS Qual	lifier	Added 181 181 <i>Limits</i> 54 - 150 Spike	Result 179 157 MSD	Qual		ug/Kg ug/Kg		* ~ *	99 86 Clie	%Rec. Limits 35 - 150 43 - 150 43 - 150 nt Sample I Prep Ty Prep %Rec.	D: SFF /pe: To 9 Batch	tal/NA : 6772 RPD
PCB-1016 PCB-1260 Surrogate DCB Decachlorobiphenyl (Surr) Lab Sample ID: 160-304-1 MSD Matrix: Solid Analysis Batch: 6993 Analyte	Result ND ND <i>MS</i> %Recovery 114 Sample Result	Qual MS Qual	lifier	Added 181 181 <i>Limits</i> 54 - 150 Spike Added	Result 179 157 MSD Result	Qual		ug/Kg ug/Kg Unit		- <u>☆</u> . ☆	99 86 Clie	%Rec. Limits 35 - 150 43 - 150 43 - 150 Matheways Prep Ty Prep %Rec. Limits	D: SFF /pe: To 9 Batch RPD	tal/NA : 6772 RPD Limit
PCB-1016 PCB-1260 Surrogate DCB Decachlorobiphenyl (Surr) Lab Sample ID: 160-304-1 MSD Matrix: Solid Analysis Batch: 6993 Analyte PCB-1016	Result ND ND <i>MS</i> %Recovery 114 Sample Result ND	Qual MS Qual	lifier	Added 181 181 <i>Limits</i> 54 - 150 Spike Added 181	Result 179 157 MSD Result 159	Qual		ug/Kg ug/Kg Unit ug/Kg		- <u>∞</u> · ☆ · ☆ · ☆ · ·	99 86 Clie %Rec 88	%Rec. Limits 35 - 150 43 - 150 43 - 150 Int Sample I Prep Ty %Rec. Limits 35 - 150	D: SFF /pe: To Batch RPD NC	tal/NA : 6772 RPD Limit 30
PCB-1016 PCB-1260 Surrogate DCB Decachlorobiphenyl (Surr) Lab Sample ID: 160-304-1 MSD Matrix: Solid Analysis Batch: 6993 Analyte	Result ND ND <i>MS</i> %Recovery 114 Sample Result	Qual MS Qual	lifier	Added 181 181 <i>Limits</i> 54 - 150 Spike Added	Result 179 157 MSD Result	Qual		ug/Kg ug/Kg Unit		- <u>☆</u> . ☆	99 86 Clie	%Rec. Limits 35 - 150 43 - 150 43 - 150 Matheways Prep Ty Prep %Rec. Limits	D: SFF /pe: To 9 Batch RPD	tal/NA : 6772 RPD Limit
PCB-1016 PCB-1260 Surrogate DCB Decachlorobiphenyl (Surr) Lab Sample ID: 160-304-1 MSD Matrix: Solid Analysis Batch: 6993 Analyte PCB-1016	Result ND ND <i>MS</i> %Recovery 114 Sample Result ND ND	Qual MS Qual Sam Qual	ifier	Added 181 181 <i>Limits</i> 54 - 150 Spike Added 181	Result 179 157 MSD Result 159	Qual		ug/Kg ug/Kg Unit ug/Kg		- <u>∞</u> · ☆ · ☆ · ☆ · ·	99 86 Clie %Rec 88	%Rec. Limits 35 - 150 43 - 150 43 - 150 Int Sample I Prep Ty %Rec. Limits 35 - 150	D: SFF /pe: To Batch RPD NC	tal/NA : 6772 RPD Limit 30
PCB-1016 PCB-1260 Surrogate DCB Decachlorobiphenyl (Surr) Lab Sample ID: 160-304-1 MSD Matrix: Solid Analysis Batch: 6993 Analyte PCB-1016 PCB-1260 Surrogate	Result ND ND <i>MS</i> %Recovery 114 Sample Result ND ND	Qual MS Qual Sam Qual	ifier	Added 181 181 <i>Limits</i> 54 - 150 Spike Added 181	Result 179 157 MSD Result 159	Qual		ug/Kg ug/Kg Unit ug/Kg		- <u>∞</u> · ☆ · ☆ · ☆ · ·	99 86 Clie %Rec 88	%Rec. Limits 35 - 150 43 - 150 43 - 150 Int Sample I Prep Ty %Rec. Limits 35 - 150	D: SFF /pe: To Batch RPD NC	tal/NA : 6772 RPD Limit 30
PCB-1016 PCB-1260 Surrogate DCB Decachlorobiphenyl (Surr) Lab Sample ID: 160-304-1 MSD Matrix: Solid Analysis Batch: 6993 Analyte PCB-1016 PCB-1260	Result ND ND <i>MS</i> %Recovery 114 Sample Result ND ND	Qual MS Qual Sam Qual	ifier	Added 181 181 <i>Limits</i> 54 - 150 Spike Added 181 181	Result 179 157 MSD Result 159	Qual		ug/Kg ug/Kg Unit ug/Kg		- <u>∞</u> · ☆ · ☆ · ☆ · ·	99 86 Clie %Rec 88	%Rec. Limits 35 - 150 43 - 150 43 - 150 Int Sample I Prep Ty %Rec. Limits 35 - 150	D: SFF /pe: To Batch RPD NC	tal/NA : 6772 RPD Limit 30

Lab Sample ID: LCS 160-6960/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 7002 Prep Batch: 6960 Spike LCS LCS %Rec. Analyte Added Result Qualifier %Rec Limits Unit D 2,4-D 250 46 - 140 322 ug/L 129 Silvex (2,4,5-TP) 25.0 28.7 115 42 - 140 ug/L

Method: 8151A - Herbicide	3 (30) (00	minueuj											
Lab Sample ID: LCS 160-6960/	2-A							Cli	ent	Sample	ID: Lab Co		
Matrix: Solid											Prep T		
Analysis Batch: 7002											Pre	o Batcl	1: <mark>696</mark>
	LCS	LCS											
Surrogate	%Recovery	Qualifier	Limits										
2,4-Dichlorophenylacetic acid	126		56 - 147										
- Lab Sample ID: LB 160-6862/1·	DLB									Client Sa	mple ID: I	Nethod	Blan
Matrix: Solid											Pre	р Туре	: TCL
Analysis Batch: 7002											Pre	o Batch	n: <mark>696</mark>
		LB LB											
Analyte	R	esult Qualifier	RL		MDL U			<u>D</u>		repared	Analyz		Dil Fa
2,4-D		ND	40			ıg/L			07/2	0/12 15:36	07/23/12	10:39	
Silvex (2,4,5-TP)		ND	10		3.0 ι	ıg/L			07/2	0/12 15:36	07/23/12	10:39	
		LB LB											
Surrogate	%Reco	overy Qualifier	Limits						P	repared	Analyz	ed	Dil Fa
2,4-Dichlorophenylacetic acid		117	56 - 147					_	07/2	0/12 15:36	07/23/12	10:39	
-													
Lab Sample ID: 160-304-1 MS										Clier	nt Sample		
Matrix: Solid												р Туре	
Analysis Batch: 7002	<u> </u>	.	0.1									o Batcl	1: <mark>69</mark> 6
Amelia		Sample	Spike	MS			11 14		_	0/ D	%Rec.		
Analyte 2,4-D	ND	Qualifier	Added	320	Qualif		Unit		D	%Rec	Limits 52 - 150		
,	ND		250	28.6			ug/L			120	32 - 150 45 - 150		
Silvex (2,4,5-TP)	ND		25.0	20.0			ug/L			114	45 - 150		
	MS	MS											
Surrogate	%Recovery	Qualifier	Limits										
2,4-Dichlorophenylacetic acid	124		56 - 147										
Lab Sample ID: 160-304-1 MSD)									Clier	nt Sample	ID: SFI	PR-00
Matrix: Solid												р Туре	
Analysis Batch: 7002												Batch	
-	Sample	Sample	Spike	MSD	MSD						%Rec.		RP
Analyte	Result	Qualifier	Added	Result	Qualif	ier	Unit		D	%Rec	Limits	RPD	Lim
2,4-D	ND		250	316			ug/L			126	52 - 150	1	2
Silvex (2,4,5-TP)	ND		25.0	28.0			ug/L			112	45 - 150	2	2
	MSD	MSD											
Surrogate	%Recovery		Limits										
2,4-Dichlorophenylacetic acid	123		56 - 147										
[_] Method: 6010C - Metals (IC	(P)												
-													
Lab Sample ID: LCS 160-6950/	2-A							Cli	ent	Sample	ID: Lab Co		
Matrix: Solid											Prep T		
Analysis Batch: 6988			Spike	1.00	LCS						Pre∣ %Rec.	o Batcl	1: 695
Analyte			Added		Qualifi	ier	Unit		D	%Rec	%Rec.		
Arsenic			2500	2430	Quanti		ug/L		_		80 - 120		
Barium			2500	2470			ug/L			99	80 - 120		
			2000	2470			~ .						

97

94

92

100

80 - 120

80 - 120

80 - 120

80 - 120

2420

2350

2310

2500

ug/L

ug/L

ug/L

ug/L

2500

2500

2500

2500

Cadmium

Chromium

Selenium

Lead

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 160-6950/2-A	k								С	lient	Sample	ID: Lab Co		
Matrix: Solid													ype: To	
Analysis Batch: 6988													b Batch	: 695
			Spike		LCS							%Rec.		
Analyte			Added	Re	esult	Quali	ifier	Unit		D	%Rec	Limits		
Silver			250		253			ug/L			101	80 - 120		
Lab Sample ID: LB 160-6943/1-B	LB										Client Sa	ample ID: I	Nethod	Blan
Matrix: Solid												Pre	p Type:	TCL
Analysis Batch: 6988												Prej	b Batch	: 695
		LB LB												
Analyte	Re	esult Qua	alifier	RL	Ν	MDL	Unit		D	P	repared	Analyz	ed	Dil F
Arsenic		ND		500		4.9	ug/L			07/2	0/12 12:32	07/23/12 0)9:47	
Barium		ND		130		9.9	ug/L			07/2	0/12 12:32	07/23/12 (9:47	
Cadmium		ND		13		2.3	ug/L			07/2	0/12 12:32	07/23/12 ()9:47	
Chromium		ND		25		7.9	ug/L			07/2	0/12 12:32	07/23/12 0)9:47	
Lead		ND		250		3.2	ug/L			07/2	0/12 12:32	07/23/12 (9:47	
Selenium		ND		500		6.7	ug/L			07/2	0/12 12:32	07/23/12 (9:47	
Silver		ND		25		15	ug/L			07/2	0/12 12:32	07/23/12 ()9:47	
Lab Sample ID: 160-304-1 MS											Clier	nt Sample	ID: SFP	R-U
Lab Sample ID: 160-304-1 MS Matrix: Solid Analysis Batch: 6988	Sample	Sample	Snika		MS	MS					Clier	Pre Pre	ID: SFP p Type: p Batch	тсі
Matrix: Solid Analysis Batch: 6988	Sample Result		Spike Added	R	MS		ifier	Unit		D		Pre Pre %Rec.	p Type:	TCL
Matrix: Solid Analysis Batch: 6988 ^{Analyte}	Result	Sample Qualifier	Added		esult		ifier	Unit		<u>D</u>	%Rec	Pre Pre %Rec. Limits	p Type:	тсі
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic	Result ND		Added 2500		esult 2430		ifier	ug/L		<u>D</u>	%Rec	Pre Pre %Rec. Limits 75 - 125	p Type:	тсі
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium	Result ND 720		Added 2500 2500	:	esult 2430 3190		ifier	ug/L ug/L		<u>D</u>	%Rec 97 99	Pre Pre %Rec. Limits 75 - 125 75 - 125	p Type:	тсі
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium	Result ND 720 ND		Added 2500 2500 2500		esult 2430 3190 2410		ifier	ug/L ug/L ug/L		<u>D</u>	%Rec 97 99 97	Pre Pre %Rec. Limits 75 - 125 75 - 125 75 - 125	p Type:	TCL
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium	Result ND 720 ND ND	Qualifier	Added 2500 2500 2500 2500 2500	:	esult 2430 3190 2410 2350		ifier	ug/L ug/L ug/L ug/L		<u>D</u>	%Rec 97 99 97 94	Pre Pre %Rec. Limits 75 - 125 75 - 125 75 - 125 75 - 125	p Type:	TCL
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium Lead	Result ND 720 ND ND 5.3	Qualifier	Added 2500 2500 2500 2500 2500 2500 2500		esult 2430 3190 2410 2350 2310		ifier	ug/L ug/L ug/L ug/L ug/L		<u>D</u>	%Rec 97 99 97 94 92	Pre Prej %Rec. Limits 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125	p Type:	TCL
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium	Result ND 720 ND ND	Qualifier	Added 2500 2500 2500 2500 2500		esult 2430 3190 2410 2350		ifier	ug/L ug/L ug/L ug/L		<u>D</u>	%Rec 97 99 97 94	Pre Pre %Rec. Limits 75 - 125 75 - 125 75 - 125 75 - 125	p Type:	тсі
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver	Result ND 720 ND 5.3 ND	Qualifier	Added 2500 2500 2500 2500 2500 2500 2500		esult 2430 3190 2410 2350 2310 2500		ifier	ug/L ug/L ug/L ug/L ug/L ug/L		<u>D</u>	%Rec 97 99 97 94 92 100 102	Pre Pre %Rec. Limits 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125	p Type: o Batch	TCL : 69
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Lab Sample ID: 160-304-1 MSD	Result ND 720 ND 5.3 ND	Qualifier	Added 2500 2500 2500 2500 2500 2500 2500		esult 2430 3190 2410 2350 2310 2500		ifier	ug/L ug/L ug/L ug/L ug/L ug/L		<u>D</u>	%Rec 97 99 97 94 92 100 102	Pre Pre %Rec. Limits 75 - 125 75 - 125	p Type: o Batch ID: SFP	TCL : 695
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Lab Sample ID: 160-304-1 MSD Matrix: Solid	Result ND 720 ND 5.3 ND	Qualifier	Added 2500 2500 2500 2500 2500 2500 2500		esult 2430 3190 2410 2350 2310 2500		ifier	ug/L ug/L ug/L ug/L ug/L ug/L		<u>D</u>	%Rec 97 99 97 94 92 100 102	Pre Pre %Rec. Limits 75 - 125 75 - 125	p Type: o Batch 	TCL : 695
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Lab Sample ID: 160-304-1 MSD	Result ND 720 ND S.3 ND ND	<u>Qualifier</u> J	Added 2500 2500 2500 2500 2500 2500 2500 250		esult 2430 3190 2410 2350 2310 2500 254	Quali	ifier	ug/L ug/L ug/L ug/L ug/L ug/L		<u>D</u>	%Rec 97 99 97 94 92 100 102	Pre Pre %Rec. Limits 75 - 125 75 - 125 Pre	p Type: o Batch ID: SFP	TCL : 695
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Lab Sample ID: 160-304-1 MSD Matrix: Solid Analysis Batch: 6988	Result ND 720 ND 5.3 ND ND Sample	<u>Qualifier</u> J Sample	Added 2500 2500 2500 2500 2500 2500 250 Spike		esult 2430 3190 2410 2350 2310 2500 254 MSD	Quali MSD		ug/L ug/L ug/L ug/L ug/L ug/L			%Rec 97 99 97 94 92 100 102 Clier	Pre Pre %Rec. Limits 75 - 125 75 - 125 Pre Pre Pre	p Type: o Batch ID: SFP p Type: o Batch	TCL : 699
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Lab Sample ID: 160-304-1 MSD Matrix: Solid Analysis Batch: 6988 Analyte	Result ND 720 ND 5.3 ND ND Sample Result	<u>Qualifier</u> J	Added 2500 2500 2500 2500 2500 2500 250 Spike Added	R	esult 2430 3190 2410 2350 2310 2500 254 MSD esult	Quali MSD		ug/L ug/L ug/L ug/L ug/L ug/L		D	%Rec 97 99 97 94 92 100 102 Clier %Rec	Pre Pre %Rec. Limits 75 - 125 75 - 125 Pre Pre %Rec. Limits	p Type: o Batch ID: SFP p Type: o Batch RPD	TCL : 699
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Lab Sample ID: 160-304-1 MSD Matrix: Solid Analysis Batch: 6988 Analyte Arsenic	Result ND 720 ND 5.3 ND ND Sample Result ND	<u>Qualifier</u> J Sample	Added 2500 2500 2500 2500 2500 2500 250 Spike Added 2500		esult 2430 3190 2410 2350 2310 2500 254 MSD esult 2430	Quali MSD		ug/L ug/L ug/L ug/L ug/L ug/L Unit ug/L			%Rec 97 99 97 94 92 100 102 Clier %Rec 97	Pre Pre %Rec. Limits 75 - 125 75 - 125 ht Sample Pre %Rec. Limits 75 - 125	p Type: o Batch ID: SFP p Type: o Batch	PR-00 TCL : 699 PR-00 TCL : 699 RI Lir
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Lab Sample ID: 160-304-1 MSD Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium	Result ND 720 ND 5.3 ND ND Sample Result ND 720	<u>Qualifier</u> J Sample	Added 2500 2500 2500 2500 2500 2500 2500 250		esult 2430 3190 2410 2350 2310 2500 254 MSD esult 2430 3230	Quali MSD		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L			%Rec 97 99 97 94 92 100 102 Clier %Rec 97 97	Pre Pre %Rec. Limits 75 - 125 75 - 125 nt Sample Pre %Rec. Limits 75 - 125 75 - 125	ID: SFP p Type: D Batch ID: SFP p Type: D Batch RPD 0 1	TCL : 699 PR-00 TCL : 699 RI Lir
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Lab Sample ID: 160-304-1 MSD Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium	Result ND 720 ND ND Sample Result ND 720 ND	<u>Qualifier</u> J Sample	Added 2500 2500 2500 2500 2500 2500 2500 250		esult 2430 3190 2410 2350 2310 2500 254 MSD esult 2430 3230 2390	Quali MSD		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L			%Rec 97 99 97 94 92 100 102 Clier %Rec 97 96	Pre Pre %Rec. Limits 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 75 - 125 nt Sample Pre %Rec. Limits 75 - 125 75 - 125 75 - 125	p Type: o Batch ID: SFP p Type: o Batch RPD 0 1 1	TCL : 69 R R Lir
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Lab Sample ID: 160-304-1 MSD Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium	Result ND 720 ND 5.3 ND ND Sample Result ND 720 ND ND	Qualifier J Sample Qualifier	Added 2500 2500 2500 2500 2500 2500 2500 250		esult 2430 3190 2410 2350 2310 2500 254 MSD esult 2430 3230 2390 2330	Quali MSD		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L			%Rec 97 99 97 94 92 100 102 Clier %Rec 97 100 96 93	Pre Pre %Rec. Limits 75 - 125 75 - 125	ID: SFP p Type: p Type: p Type: p Batch RPD 0 1 1 1	PR-00 TCL : 699 RI Lin
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Lab Sample ID: 160-304-1 MSD Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium Lead	Result ND 720 ND Sample Result ND 720 ND Sample Result ND 720 ND Sample Result ND 720 ND 720 ND 720 ND 5.3	Qualifier J Sample Qualifier	Added 2500 2500 2500 2500 2500 2500 2500 250	Re	esult 2430 3190 2410 2350 2310 2550 2554 MSD esult 2430 3230 2390 2330 2330	Quali MSD		Unit ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L			%Rec 97 99 97 94 92 100 102 Clier %Rec 97 100 96 93 91	Pre Pre %Rec. Limits 75 - 125 75 - 125	ID: SFP p Type: p Type: p Type: p Batch 0 1 1 1 1	TCL : 699
Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver Lab Sample ID: 160-304-1 MSD Matrix: Solid Analysis Batch: 6988 Analyte Arsenic Barium Cadmium Chromium	Result ND 720 ND 5.3 ND ND Sample Result ND 720 ND ND	Qualifier J Sample Qualifier	Added 2500 2500 2500 2500 2500 2500 2500 250	Re	esult 2430 3190 2410 2350 2310 2500 254 MSD esult 2430 3230 2390 2330	Quali MSD		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L			%Rec 97 99 97 94 92 100 102 Clier %Rec 97 100 96 93	Pre Pre %Rec. Limits 75 - 125 75 - 125	ID: SFP p Type: p Type: p Type: p Batch RPD 0 1 1 1	PR-00 TCL : 699 RI Lin

Lab Sample ID: LCS 160-6985/2-A Matrix: Solid Analysis Batch: 6998					Client	t Sample	Prep 1	ontrol Sample Type: Total/NA p Batch: 6985
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	25.0	25.2		ug/L		101	80 - 120	

Method: 7470A - Mercury (CVAA) (Continued)

Matrix: Solid Analysis Batch: 6998 Analyte Mercury Lab Sample ID: 160-304-1 MS	R	LB LB esult Qualifier										p Type p Batcl	
Analyte Mercury Lab Sample ID: 160-304-1 MS	R								_		Pre	p Batcl	h: 69
Aercury Lab Sample ID: 160-304-1 MS	Re												
Aercury Lab Sample ID: 160-304-1 MS	R	sult Qualifier							_				
ab Sample ID: 160-304-1 MS		Guan Guannon		RL		MDL	Unit	I	כ	Prepared	Analyz	ed	Dil F
		ND		1.0	(0.079	ug/L		07/	23/12 08:0	4 07/23/12	12:21	
										Cli	ent Sample		PR-0
Matrix: Solid												p Type	
Analysis Batch: 6998	Sample	Sample	Spike		MS	MS					%Rec.	p Batcl	11. 09
Analyte		Qualifier	Added		Result		lifior	Unit	D	%Rec	Limits		
Mercury	ND		25.0		24.8	Quai		ug/L		99	70 - 130		
licitury			20.0		21.0			ug/L		00	10-100		
_ab Sample ID: 160-304-1 MSD										Clie	ent Sample	ID: SF	PR-0
Matrix: Solid											Pre	р Туре	: TC
Analysis Batch: 6998											Pre	p Batc	h: 69
-	Sample	Sample	Spike		MSD	MSD)				%Rec.	- -	R
Analyte	Result	Qualifier	Added		Result	Qual	lifier	Unit	D	%Rec	Limits	RPD	Li
Mercury	ND		25.0	-	24.0			ug/L		96	70 - 130	3	
ethod: 1010A - Ignitability, .ab Sample ID: MB 160-7017/2 Matrix: Solid Analysis Batch: 7017	,Pensky-N	Martens Cl	osed Cu	p Met	thod					Client	Sample ID: Prep 1	Methoo Type: To	
Lab Sample ID: MB 160-7017/2 Matrix: Solid Analysis Batch: 7017	-	MB MB esult Qualifier		RL	thod	MDL)	Client S	Prep 1 Analyz	Type: To	otal/N
ab Sample ID: MB 160-7017/2 Matrix: Solid Analysis Batch: 7017	-	MB MB		<u> </u>	thod		Unit Degre		0		Prep T	Type: To	otal/N
Lab Sample ID: MB 160-7017/2 Matrix: Solid Analysis Batch: 7017 Analyte		MB MB esult Qualifier		RL	thod					Prepared	Prep 1 Analyz 07/23/12	Expe: To 2 ed 15:55	otal/N Dil F
Lab Sample ID: MB 160-7017/2 Matrix: Solid Analysis Batch: 7017 Analyte Tashpoint Lab Sample ID: LCS 160-7017/3		MB MB esult Qualifier		RL	thod					Prepared	Prep 1 	Type: To red 15:55	otal/N Dil F Samp
Lab Sample ID: MB 160-7017/2 Matrix: Solid Analysis Batch: 7017 Analyte Flashpoint Lab Sample ID: LCS 160-7017/3 Matrix: Solid		MB MB esult Qualifier		RL	thod					Prepared	Prep 1 	Expe: To 2 ed 15:55	otal/N Dil F Samp
Lab Sample ID: MB 160-7017/2 Matrix: Solid Analysis Batch: 7017 Analyte Tashpoint Lab Sample ID: LCS 160-7017/3		MB MB esult Qualifier		RL			Degre			Prepared	Prep 1 	Type: To red 15:55	otal/N Dil F Samp
Lab Sample ID: MB 160-7017/2 Matrix: Solid Analysis Batch: 7017 Analyte Flashpoint Lab Sample ID: LCS 160-7017/3 Matrix: Solid Analysis Batch: 7017		MB MB esult Qualifier		RL		25 LCS	Degre			Prepared	Prep 1 Analyz 07/23/12 e ID: Lab Co Prep 1	Type: To red 15:55	otal/N Dil F Samp
Lab Sample ID: MB 160-7017/2 Matrix: Solid Analysis Batch: 7017 Analyte Flashpoint Lab Sample ID: LCS 160-7017/3 Matrix: Solid		MB MB esult Qualifier		RL	LCS	25 LCS	Degre	es C	Clier	Prepared It Sample	Prep 1 Analyz 07/23/12 e ID: Lab Co Prep 1 %Rec.	Type: To red 15:55	otal/N Dil F Samp
Lab Sample ID: MB 160-7017/2 Matrix: Solid Analysis Batch: 7017 Analyte Flashpoint Lab Sample ID: LCS 160-7017/3 Matrix: Solid Analysis Batch: 7017 Analyte Flashpoint		MB MB esult Qualifier	Spike Added	RL	LCS Result	25 LCS	Degre	es C	Clier	Prepared at Sample %Rec	Prep 1 Analyz 07/23/12 e ID: Lab Co Prep 1 %Rec. Limits	Type: To red 15:55	otal/N Dil F Samp
Lab Sample ID: MB 160-7017/2 Matrix: Solid Analysis Batch: 7017 Analyte Flashpoint Lab Sample ID: LCS 160-7017/3 Matrix: Solid Analysis Batch: 7017		MB MB esult Qualifier	Spike Added	RL	LCS Result	25 LCS	Degre	es C	Clier	Prepared at Sample <u>%Rec</u> 104	Prep 1 Analyz 07/23/12 e ID: Lab Co Prep 1 %Rec. Limits	Type: To red 15:55 ontrol S Type: To	otal/N Dil F Samp otal/N
Lab Sample ID: MB 160-7017/2 Matrix: Solid Analysis Batch: 7017 Analyte Flashpoint Lab Sample ID: LCS 160-7017/3 Matrix: Solid Analysis Batch: 7017 Analyte Flashpoint		MB MB esult Qualifier	Spike Added	RL	LCS Result	25 LCS	Degre	es C	Clier	Prepared at Sample <u>%Rec</u> 104	Prep 1 Analyz 07/23/12 e ID: Lab Co Prep 1 %Rec. Limits 95.9 - 104 ent Sample	Type: To red 15:55 ontrol S Type: To	otal/N Dil F Samp otal/N PR-0
Lab Sample ID: MB 160-7017/2 Matrix: Solid Analysis Batch: 7017 Analyte Flashpoint Lab Sample ID: LCS 160-7017/3 Matrix: Solid Analysis Batch: 7017 Analyte Flashpoint Lab Sample ID: 160-304-1 DU		MB MB esult Qualifier	Spike Added	RL	LCS Result	25 LCS	Degre	es C	Clier	Prepared at Sample <u>%Rec</u> 104	Prep 1 Analyz 07/23/12 e ID: Lab Co Prep 1 %Rec. Limits 95.9 - 104 ent Sample	Type: To red 15:55 Type: To UD: SF	otal/N Dil F Samp otal/N PR-0
Lab Sample ID: MB 160-7017/2 Matrix: Solid Analysis Batch: 7017 Analyte Flashpoint Lab Sample ID: LCS 160-7017/3 Matrix: Solid Analysis Batch: 7017 Analyte Flashpoint Lab Sample ID: 160-304-1 DU Matrix: Solid		MB MB esult Qualifier	Spike Added	RL	LCS Result 26.0	25 LCS	Degre	es C	Clier	Prepared at Sample <u>%Rec</u> 104	Prep 1 Analyz 07/23/12 e ID: Lab Co Prep 1 %Rec. Limits 95.9 - 104 ent Sample	Type: To red 15:55 Type: To UD: SF	otal/N Dil F Samp otal/N PR-0
Lab Sample ID: MB 160-7017/2 Matrix: Solid Analysis Batch: 7017 Analyte Flashpoint Lab Sample ID: LCS 160-7017/3 Matrix: Solid Analysis Batch: 7017 Analyte Flashpoint Lab Sample ID: 160-304-1 DU Matrix: Solid	Re	MB MB esult Qualifier	Spike Added	RL	LCS Result 26.0	25 LCS Qual	Degre	es C	Clier	Prepared at Sample <u>%Rec</u> 104	Prep 1 Analyz 07/23/12 e ID: Lab Co Prep 1 %Rec. Limits 95.9 - 104 ent Sample	Type: To red 15:55 Type: To UD: SF	Dil I Dil I Samı otal/I PR-0 otal/I

Method: 9012 - Cyanide, Reactive (Continued)

Lab Sample I	ID: LCS 160-7013/2-A	^2						Clien	t Sample	ID: Lab Co	ontrol S	ample
Matrix: Solid										Prep T	ype: To	tal/NA
Analysis Bate	ch: 7163									Pre	p Batch	: 7013
				Spike	LCS	LCS				%Rec.		
Analyte				Added	Result	Qualifier	Unit	D	%Rec	Limits		
Cyanide, Reactiv	/e			6.25	2.01		mg/Kg		32	10 ₋ 75		
Lab Sample I	ID: 160-304-1 MS								Clie	nt Sample	ID: SFP	R-002
Matrix: Solid										Prep T	ype: To	tal/NA
Analysis Bate	ch: 7163									Pre	p Batch	: 7013
_		Sample	Sample	Spike	MS	MS				%Rec.	-	
Analyte		Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Cyanide, Reactiv	/e	ND		6.25	0.989		mg/Kg		16	10 - 45		
Lab Sample I	ID: 160-304-1 DU								Clie	nt Sample	ID: SFP	R-002
Matrix: Solid											ype: To	
Analysis Bate											p Batch	
		Sample	Sample		DU	DU					p Daton	RPD
Analyte			Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Cyanide, Reactiv	/e	ND			ND		mg/Kg				NC	30
L												
Method: 903	34 - Sulfide, Reacti	ive										
Lab Sample I	ID: MB 160-7014/1-A								Client S	ample ID: I	Method	Blank
Matrix: Solid										Prep T	ype: To	tal/NA
Analysis Bate	ch: 7054										p Batch	
			MB MB									
Analyte		R	esult Qualifier		RL	MDL Unit		D F	Prepared	Analyz	ed	Dil Fac
Sulfide, Reactive)		93.5		22	22 mg/K	a	07/2	23/12 15:35	07/24/12	11:34	1
Lab Sample I	ID: LCS 160-7014/2-A						3	••••				1
Matrix: Solid							5		t Sample		ontrol S	
							3		t Sample	ID: Lab Co		ample
Analysis Bate							3		t Sample	ID: Lab Co Prep T	ype: To	ample tal/NA
Analysis Bate				Spike	LCS	LCS	3		t Sample	ID: Lab Co Prep T		ample tal/NA
				Spike Added		LCS Qualifier	Unit		t Sample %Rec	ID: Lab Co Prep T Pre	ype: To	ample tal/NA
Analysis Bate Analyte Sulfide, Reactive	ch: 7054			-				Clien	-	ID: Lab Co Prep T Pre %Rec.	ype: To	ample tal/NA
Analyte Sulfide, Reactive	ch: 7054			Added	Result	Qualifier	Unit	Clien	%Rec	ID: Lab Co Prep T %Rec. Limits 10 - 128	ype: To p Batch	ample tal/NA : 7014
Analyte Sulfide, Reactive	ch: 7054			Added	Result	Qualifier	Unit	Clien	%Rec	ID: Lab Co Prep T Pre %Rec. Limits 10 - 128 nt Sample	ype: To p Batch ID: SFP	ample tal/NA : 7014 R-002
Analyte Sulfide, Reactive Lab Sample I Matrix: Solid	ch: 7054			Added	Result	Qualifier	Unit	Clien	%Rec	ID: Lab Co Prep T Pre %Rec. Limits 10 - 128 nt Sample Prep T	ype: To p Batch ID: SFP ype: To	ample tal/NA : 7014 PR-002 tal/NA
Analyte Sulfide, Reactive	ch: 7054	Samolo		Added 202	Result 294	Qualifier *	Unit	Clien	%Rec	ID: Lab Co Prep T %Rec. Limits 10 - 128 nt Sample Prep T Pre	ype: To p Batch ID: SFP	ample tal/NA : 7014 PR-002 tal/NA
Analyte Sulfide, Reactive Lab Sample I Matrix: Solid Analysis Bate	ch: 7054	-	Sample	Added 202 Spike	Result 294 MS	Qualifier *	- <mark>Unit</mark> mg/Kg	Clien		ID: Lab Co Prep T Pre %Rec. Limits 10 - 128 nt Sample Prep T Pre %Rec.	ype: To p Batch ID: SFP ype: To	ample tal/NA : 7014 PR-002 tal/NA
Analyte Sulfide, Reactive Lab Sample I Matrix: Solid	ch: 7054	-	Qualifier	Added 202	Result 294 MS	Qualifier * MS Qualifier	Unit	Clien	%Rec	ID: Lab Co Prep T %Rec. Limits 10 - 128 nt Sample Prep T Pre	ype: To p Batch ID: SFP ype: To	ample tal/NA : 7014 PR-002 tal/NA
Analyte Sulfide, Reactive Lab Sample I Matrix: Solid Analysis Bate Analyte Sulfide, Reactive	ch: 7054	Result	Qualifier	Added 202 Spike Added	Result 294 MS Result	Qualifier * MS Qualifier	Unit mg/Kg Unit	Clien	%Rec 146 Clie %Rec 0	ID: Lab Co Prep T Pre %Rec. Limits 10 - 128 nt Sample Prep T Pre %Rec. Limits 10 - 121	ype: To p Batch ID: SFP ype: To p Batch	ample tal/NA : 7014 /R-002 tal/NA : 7014
Analyte Sulfide, Reactive Lab Sample I Matrix: Solid Analysis Bate Analyte Sulfide, Reactive Lab Sample I	ch: 7054 ID: 160-304-1 MS ch: 7054 ID: 160-304-1 DU	Result	Qualifier	Added 202 Spike Added	Result 294 MS Result	Qualifier * MS Qualifier	Unit mg/Kg Unit	Clien	%Rec 146 Clie %Rec 0	ID: Lab Co Prep T Pre %Rec. Limits 10 - 128 nt Sample Prep T Pre %Rec. Limits 10 - 121 nt Sample	ype: To p Batch ID: SFP ype: To p Batch ID: SFP	ample tal/NA : 7014 PR-002 tal/NA : 7014 PR-002
Analyte Sulfide, Reactive Lab Sample I Matrix: Solid Analysis Bate Sulfide, Reactive Lab Sample I Matrix: Solid	ch: 7054	Result	Qualifier	Added 202 Spike Added	Result 294 MS Result	Qualifier * MS Qualifier	Unit mg/Kg Unit	Clien	%Rec 146 Clie %Rec 0	ID: Lab Co Prep T Pre %Rec. Limits 10 - 128 nt Sample Prep T Pre %Rec. Limits 10 - 121 nt Sample Prep T	ype: To p Batch ID: SFP ype: To p Batch ID: SFP ype: To	ample tal/NA : 7014 PR-002 tal/NA : 7014 PR-002 tal/NA
Analyte Sulfide, Reactive Lab Sample I Matrix: Solid Analysis Bate Analyte Sulfide, Reactive Lab Sample I	ch: 7054	Result ND	Qualifier	Added 202 Spike Added	Result 294 MS Result ND	Qualifier * MS Qualifier F	Unit mg/Kg Unit	Clien	%Rec 146 Clie %Rec 0	ID: Lab Co Prep T Pre %Rec. Limits 10 - 128 nt Sample Prep T Pre %Rec. Limits 10 - 121 nt Sample Prep T	ype: To p Batch ID: SFP ype: To p Batch ID: SFP	ample tal/NA : 7014 PR-002 tal/NA : 7014 PR-002 tal/NA : 7014
Analyte Sulfide, Reactive Lab Sample I Matrix: Solid Analysis Bate Sulfide, Reactive Lab Sample I Matrix: Solid Analysis Bate	ch: 7054	Result ND Sample	Qualifier *	Added 202 Spike Added	Result 294 MS Result ND	Qualifier * MS Qualifier F	Unit mg/Kg Unit mg/Kg	Clien D	%Rec 146 Clie %Rec 0	ID: Lab Co Prep T Pre %Rec. Limits 10 - 128 nt Sample Prep T Pre %Rec. Limits 10 - 121 nt Sample Prep T	ype: To p Batch ID: SFP ype: To p Batch ID: SFP ype: To p Batch	ample tal/NA : 7014 PR-002 tal/NA : 7014 PR-002 tal/NA : 7014 RPD
Analyte Sulfide, Reactive Lab Sample I Matrix: Solid Analysis Bate Sulfide, Reactive Lab Sample I Matrix: Solid	ch: 7054	Result ND Sample	Qualifier*	Added 202 Spike Added	Result 294 MS Result ND	Qualifier * MS Qualifier F	Unit mg/Kg Unit	Clien	%Rec 146 Clie %Rec 0	ID: Lab Co Prep T Pre %Rec. Limits 10 - 128 nt Sample Prep T Pre %Rec. Limits 10 - 121 nt Sample Prep T	ype: To p Batch ID: SFP ype: To p Batch ID: SFP ype: To	ample tal/NA : 7014 PR-002 tal/NA : 7014 PR-002 tal/NA : 7014

S

Lab Sample ID: 160-304-1 DU								Clie	nt Sample ID: S	FPR-002
Matrix: Solid									Prep Type:	Total/N/
Analysis Batch: 7016									Prep Bat	
	-	Sample			DU		_			RPI
Analyte		Qualifier			Qualifier	Unit	D		RP	
pH	5.69			5.660		SU			0.	5
Lab Sample ID: LCS 160-7016/5							Clien	t Sample	ID: Lab Control	Sample
Matrix: Solid									Prep Type:	
Analysis Batch: 7016										
			Spike		LCS		_		%Rec.	
Analyte			Added		Qualifier	SU	D	%Rec	Limits	
pH			7.00	7.050		50		101		
Method: 9066 - Phenolics, To	tal Recc	overable								
Lab Sample ID: MB 160-6946/1-A								Client S	ample ID: Metho	
Matrix: Solid									Prep Type:	
Analysis Batch: 7275		MB MB							Prep Bat	ch: 6946
Analyte	р	esult Qualifier		RL	MDL Unit		DF	repared	Analyzed	Dil Fac
Phenols, Total		ND Qualifier		4.9	4.4 mg/K	a		20/12 13:15		
Matrix: Solid Analysis Batch: 7275			Spike	LCS	LCS				Prep Type: Prep Bat %Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Phenols, Total			19.5	19.6		mg/Kg		101	76 - 113	
Lab Sample ID: 160-304-1 MS								Clie	nt Sample ID: S	FPR-002
								one	Prep Type:	
Matrix: Solid										Iotal/NA
Matrix: Solid Analysis Batch: 7275										
Matrix: Solid Analysis Batch: 7275	Sample	Sample	Spike	MS	MS				Prep Bat %Rec.	
	•	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	Prep Bat	
Analysis Batch: 7275	•		•			Unit mg/Kg	D	%Rec	Prep Bat %Rec.	
Analysis Batch: 7275 Analyte Phenols, Total	Result		Added	Result				103	Prep Bat %Rec. Limits 69 - 118	ch: 6946 _
Analysis Batch: 7275 Analyte Phenols, Total Lab Sample ID: 160-304-1 DU	Result		Added	Result				103	Prep Bat %Rec. Limits 69 - 118 nt Sample ID: S	ch: 6946 FPR-002
Analysis Batch: 7275 Analyte Phenols, Total Lab Sample ID: 160-304-1 DU Matrix: Solid	Result		Added	Result				103	Prep Bat %Rec. Limits 69 - 118 nt Sample ID: S Prep Type:	ch: 6946 FPR-002 Total/NA
Analysis Batch: 7275 Analyte Phenols, Total Lab Sample ID: 160-304-1 DU	Result ND		Added	Result 22.4				103	Prep Bat %Rec. Limits 69 - 118 nt Sample ID: S	ch: 6946 FPR-002 Total/NA ch: 6946
Analysis Batch: 7275 Analyte Phenols, Total Lab Sample ID: 160-304-1 DU Matrix: Solid	Result ND Sample	Qualifier	Added	Result 22.4 DU	Qualifier		×	103	Prep Bat %Rec. Limits 69 - 118 nt Sample ID: S Prep Type:	ch: 6946 FPR-002 Total/NA ch: 6946 RPD
Analysis Batch: 7275 Analyte Phenols, Total Lab Sample ID: 160-304-1 DU Matrix: Solid Analysis Batch: 7275	Result ND Sample	Qualifier	Added	Result 22.4 DU	Qualifier DU	mg/Kg	<u> </u>	103	Prep Bat %Rec. Limits 69 - 118 nt Sample ID: S Prep Type: Prep Bat	Ch: 6946 FPR-002 Total/NA Ch: 6946 RPD D Limit
Analysis Batch: 7275 Analyte Phenols, Total Lab Sample ID: 160-304-1 DU Matrix: Solid Analysis Batch: 7275 Analyte Phenols, Total	Result ND Sample Result	Qualifier	Added	Result 22.4 DU Result	Qualifier DU	mg/Kg	×	103	Prep Bat %Rec. Limits 69 - 118 nt Sample ID: S Prep Type: Prep Bat	Ch: 6946 FPR-002 Total/NA Ch: 6946 RPE D Limi
Analysis Batch: 7275 Analyte Phenols, Total Lab Sample ID: 160-304-1 DU Matrix: Solid Analysis Batch: 7275 Analyte Phenols, Total Method: 9095B - Paint Filter	Result ND Sample Result	Qualifier	Added	Result 22.4 DU Result	Qualifier DU	mg/Kg	×	Clie	Prep Bat %Rec. Limits 69 - 118 nt Sample ID: S Prep Type: Prep Bat N	ch: 6946 FPR-002 Total/NA ch: 6946 RPC D Limit C 30
Analysis Batch: 7275 Analyte Phenols, Total Lab Sample ID: 160-304-1 DU Matrix: Solid Analysis Batch: 7275 Analyte Phenols, Total	Result ND Sample Result	Qualifier	Added	Result 22.4 DU Result	Qualifier DU	mg/Kg	×	Clie	Prep Bat %Rec. Limits 69 - 118 nt Sample ID: S Prep Type: Prep Bat 	ch: 6946 FPR-002 Total/NA ch: 6946 RPD D Limit C 30 FPR-002
Analysis Batch: 7275 Analyte Phenols, Total Lab Sample ID: 160-304-1 DU Matrix: Solid Analysis Batch: 7275 Analyte Phenols, Total Method: 9095B - Paint Filter Lab Sample ID: 160-304-1 DU	Result ND Sample Result	Qualifier	Added	Result 22.4 DU Result	Qualifier DU	mg/Kg	×	Clie	Prep Bat %Rec. Limits 69 - 118 nt Sample ID: S Prep Type: Prep Bat N	Ch: 6946 FPR-002 Total/NA Ch: 6946 RPC D C C S FPR-002
Analysis Batch: 7275 Analyte Phenols, Total Lab Sample ID: 160-304-1 DU Matrix: Solid Analysis Batch: 7275 Analyte Phenols, Total Method: 9095B - Paint Filter Lab Sample ID: 160-304-1 DU Matrix: Solid	Result ND Sample Result ND	Qualifier	Added	Result 22.4 DU Result ND	Qualifier DU	mg/Kg	×	Clie	Prep Bat %Rec. Limits 69 - 118 nt Sample ID: S Prep Type: Prep Bat 	ch: 6946 FPR-002 Total/NA ch: 6946 RPD D Limit C 30 FPR-002

Analyte Result Qualifier Result Qualifier Unit D RPD Limit Free Liquid pass pass NONE NC

QC Association Summary

Client: Tetra Tech EM Inc. Project/Site: Waste Characterization

GC/MS VOA

Leach Batch: 6863

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
160-304-1	SFPR-002	TCLP	Solid	1311	
160-304-1 MS	SFPR-002	TCLP	Solid	1311	
160-304-1 MSD	SFPR-002	TCLP	Solid	1311	
LB 160-6863/1-A LB	Method Blank	TCLP	Solid	1311	

Analysis Batch: 6980

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
160-304-1	SFPR-002	Total/NA	Solid	8260C	6981
160-304-1 MS	SFPR-002	Total/NA	Solid	8260C	6981
160-304-1 MSD	SFPR-002	Total/NA	Solid	8260C	6981
LCS 160-6980/2	Lab Control Sample	Total/NA	Solid	8260C	
MB 160-6980/1	Method Blank	Total/NA	Solid	8260C	

Prep Batch: 6981

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
160-304-1	SFPR-002	Total/NA	Solid	5030C	
160-304-1 MS	SFPR-002	Total/NA	Solid	5030C	
160-304-1 MSD	SFPR-002	Total/NA	Solid	5030C	
Analysis Batch: 6982					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
160-304-1	SFPR-002	TCLP	Solid	8260C	686
160-304-1 MS	SFPR-002	TCLP	Solid	8260C	686
160-304-1 MSD	SFPR-002	TCLP	Solid	8260C	686
LB 160-6863/1-A LB	Method Blank	TCLP	Solid	8260C	686
LCS 160-6982/4	Lab Control Sample	Total/NA	Solid	8260C	
Prep Batch: 6768					
Lab Sample ID	Client Sample ID	David Taxa	Matrix	Method	
	Client Sample ID	Ргер Туре	Maula	wethod	Prep Batc
160-304-1	SFPR-002	Total/NA	Solid	3550C	Prep Batc
	· · · · · · · · · · · · · · · · · · ·				Prep Batc
160-304-1	SFPR-002	Total/NA	Solid	3550C	Prep Batc
160-304-1 160-304-1 MS	SFPR-002 SFPR-002	Total/NA Total/NA	Solid Solid	3550C 3550C	Prep Batc
160-304-1 160-304-1 MS 160-304-1 MSD	SFPR-002 SFPR-002 SFPR-002	Total/NA Total/NA Total/NA	Solid Solid Solid	3550C 3550C 3550C	Prep Batc
160-304-1 160-304-1 MS 160-304-1 MSD LCS 160-6768/2-A	SFPR-002 SFPR-002 SFPR-002 Lab Control Sample	Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid	3550C 3550C 3550C 3550C 3550C	Prep Batc
160-304-1 160-304-1 MS 160-304-1 MSD LCS 160-6768/2-A MB 160-6768/1-A	SFPR-002 SFPR-002 SFPR-002 Lab Control Sample	Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid	3550C 3550C 3550C 3550C 3550C	Prep Batc
160-304-1 160-304-1 MS 160-304-1 MSD LCS 160-6768/2-A MB 160-6768/1-A each Batch: 6862	SFPR-002 SFPR-002 SFPR-002 Lab Control Sample Method Blank	Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid	3550C 3550C 3550C 3550C 3550C 3550C	
160-304-1 160-304-1 MS 160-304-1 MSD LCS 160-6768/2-A MB 160-6768/1-A Leach Batch: 6862 Lab Sample ID	SFPR-002 SFPR-002 SFPR-002 Lab Control Sample Method Blank Client Sample ID	Total/NA Total/NA Total/NA Total/NA Total/NA Prep Type	Solid Solid Solid Solid Solid Matrix	3550C 3550C 3550C 3550C 3550C Method	
160-304-1 160-304-1 MS 160-304-1 MSD LCS 160-6768/2-A MB 160-6768/1-A Leach Batch: 6862 Lab Sample ID 160-304-1	SFPR-002 SFPR-002 SFPR-002 Lab Control Sample Method Blank Client Sample ID SFPR-002	Total/NA Total/NA Total/NA Total/NA Total/NA Prep Type TCLP	Solid Solid Solid Solid Solid Matrix Solid	3550C 3550C 3550C 3550C 3550C 3550C Method 1311	

Analysis Batch: 6982

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
160-304-1	SFPR-002	TCLP	Solid	8260C	6863
160-304-1 MS	SFPR-002	TCLP	Solid	8260C	6863
160-304-1 MSD	SFPR-002	TCLP	Solid	8260C	6863
LB 160-6863/1-A LB	Method Blank	TCLP	Solid	8260C	6863
LCS 160-6982/4	Lab Control Sample	Total/NA	Solid	8260C	

GC/MS Semi VOA

Prep Batch: 6768

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
160-304-1	SFPR-002	Total/NA	Solid	3550C	
160-304-1 MS	SFPR-002	Total/NA	Solid	3550C	
160-304-1 MSD	SFPR-002	Total/NA	Solid	3550C	
LCS 160-6768/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 160-6768/1-A	Method Blank	Total/NA	Solid	3550C	

Leach Batch: 6862

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep	Batch
160-304-1	SFPR-002	TCLP	Solid	1311	
160-304-1 MS	SFPR-002	TCLP	Solid	1311	
160-304-1 MSD	SFPR-002	TCLP	Solid	1311	
LB 160-6862/1-B LB	Method Blank	TCLP	Solid	1311	

Prep Batch: 6958

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
160-304-1	SFPR-002	TCLP	Solid	3510C	6862
160-304-1 MS	SFPR-002	TCLP	Solid	3510C	6862
160-304-1 MSD	SFPR-002	TCLP	Solid	3510C	6862
LB 160-6862/1-B LB	Method Blank	TCLP	Solid	3510C	6862
LCS 160-6958/2-A	Lab Control Sample	Total/NA	Solid	3510C	

GC/MS Semi VOA (Continued)

Analysis Batch: 7018

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-304-1	SFPR-002	Total/NA	Solid	8270D	6768
160-304-1	SFPR-002	TCLP	Solid	8270D	6958
160-304-1 MS	SFPR-002	Total/NA	Solid	8270D	6768
160-304-1 MS	SFPR-002	TCLP	Solid	8270D	6958
160-304-1 MSD	SFPR-002	Total/NA	Solid	8270D	6768
160-304-1 MSD	SFPR-002	TCLP	Solid	8270D	6958
LB 160-6862/1-B LB	Method Blank	TCLP	Solid	8270D	6958
LCS 160-6768/2-A	Lab Control Sample	Total/NA	Solid	8270D	6768
LCS 160-6958/2-A	Lab Control Sample	Total/NA	Solid	8270D	6958
MB 160-6768/1-A	Method Blank	Total/NA	Solid	8270D	6768

GC VOA

Leach Batch: 7049

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-304-1	SFPR-002	Soluble	Solid	DI Leach	- <u> </u>
160-304-1 MS	SFPR-002	Soluble	Solid	DI Leach	
160-304-1 MSD	SFPR-002	Soluble	Solid	DI Leach	
LCS 160-7049/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
MB 160-7049/1-A	Method Blank	Soluble	Solid	DI Leach	

Analysis Batch: 7052

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
160-304-1	SFPR-002	Soluble	Solid	8015B	7049
160-304-1 MS	SFPR-002	Soluble	Solid	8015B	7049
160-304-1 MSD	SFPR-002	Soluble	Solid	8015B	7049
LCS 160-7049/2-A	Lab Control Sample	Soluble	Solid	8015B	7049
MB 160-7049/1-A	Method Blank	Soluble	Solid	8015B	7049

GC Semi VOA

Prep Batch: 6772

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
160-304-1	SFPR-002	Total/NA	Solid	3550C
160-304-1 MS	SFPR-002	Total/NA	Solid	3550C
160-304-1 MSD	SFPR-002	Total/NA	Solid	3550C
LCS 160-6772/2-A	Lab Control Sample	Total/NA	Solid	3550C
MB 160-6772/1-A	Method Blank	Total/NA	Solid	3550C

Leach Batch: 6862

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-304-1	SFPR-002	TCLP	Solid	1311	
160-304-1 MS	SFPR-002	TCLP	Solid	1311	
160-304-1 MSD	SFPR-002	TCLP	Solid	1311	
LB 160-6862/1-D LB	Method Blank	TCLP	Solid	1311	

Prep Batch: 6960

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
160-304-1	SFPR-002	TCLP	Solid	8151A	6862
160-304-1 MS	SFPR-002	TCLP	Solid	8151A	6862
160-304-1 MSD	SFPR-002	TCLP	Solid	8151A	6862
LB 160-6862/1-D LB	Method Blank	TCLP	Solid	8151A	6862

S

GC Semi VOA (Continued)

Prep Batch: 6960 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batcl
LCS 160-6960/2-A	Lab Control Sample	Total/NA	Solid	8151A	
- Analysis Batch: 6993					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
160-304-1	SFPR-002	Total/NA	Solid	8082A	677
160-304-1 MS	SFPR-002	Total/NA	Solid	8082A	677
160-304-1 MSD	SFPR-002	Total/NA	Solid	8082A	677
LCS 160-6772/2-A	Lab Control Sample	Total/NA	Solid	8082A	6772
MB 160-6772/1-A	Method Blank	Total/NA	Solid	8082A	6772
– Analysis Batch: 7002					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
160-304-1	SFPR-002	TCLP	Solid	8151A	696
160-304-1 MS	SFPR-002	TCLP	Solid	8151A	696
160-304-1 MSD	SFPR-002	TCLP	Solid	8151A	696
LB 160-6862/1-D LB	Method Blank	TCLP	Solid	8151A	6960
LCS 160-6960/2-A	Lab Control Sample	Total/NA	Solid	8151A	6960
Prep Batch: 7009					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batcl
160-304-1	SFPR-002	TCLP	Solid	3510C	686
LCS 160-7009/2-A	Lab Control Sample	Total/NA	Solid	3510C	
LCSD 160-7009/3-A	Lab Control Sample Dup	Total/NA	Solid	3510C	
MB 160-7009/1-A	Method Blank	Total/NA	Solid	3510C	
Analysis Batch: 7050					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
160-304-1	SFPR-002	TCLP	Solid	8081B	7009
LCS 160-7009/2-A	Lab Control Sample	Total/NA	Solid	8081B	7009
LCSD 160-7009/3-A	Lab Control Sample Dup	Total/NA	Solid	8081B	700
MB 160-7009/1-A	Method Blank	Total/NA	Solid	8081B	7009
Metals					
Leach Batch: 6922					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batcl
160-304-1	SFPR-002	TCLP	Solid	1311	
160-304-1 MS	SFPR-002	TCLP	Solid	1311	
160-304-1 MSD	SFPR-002	TCLP	Solid	1311	
LB 160-6922/1-B LB	Method Blank	TCLP	Solid	1311	
Leach Batch: 6943					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
160-304-1	SFPR-002	TCLP	Solid	1311	
160-304-1 MS	SFPR-002	TCLP	Solid	1311	
	SFPR-002	TCLP	Solid	1311	
160-304-1 MSD		TCLP	Solid	1311	
160-304-1 MSD LB 160-6943/1-B LB	Method Blank				
	Method Blank				
LB 160-6943/1-B LB	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batcl
LB 160-6943/1-B LB Prep Batch: 6950		Prep Type TCLP	Matrix Solid	Method 3010A	Prep Batch

Metals (Continued)

Prep Batch: 6950 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-304-1 MSD	SFPR-002	TCLP	Solid	3010A	6943
LB 160-6943/1-B LB	Method Blank	TCLP	Solid	3010A	6943
LCS 160-6950/2-A	Lab Control Sample	Total/NA	Solid	3010A	

Prep Batch: 6985

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
160-304-1	SFPR-002	TCLP	Solid	7470A	6922
160-304-1 MS	SFPR-002	TCLP	Solid	7470A	6922
160-304-1 MSD	SFPR-002	TCLP	Solid	7470A	6922
LB 160-6922/1-B LB	Method Blank	TCLP	Solid	7470A	6922
LCS 160-6985/2-A	Lab Control Sample	Total/NA	Solid	7470A	

Analysis Batch: 6988

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
160-304-1	SFPR-002	TCLP	Solid	6010C	6950
160-304-1 MS	SFPR-002	TCLP	Solid	6010C	6950
160-304-1 MSD	SFPR-002	TCLP	Solid	6010C	6950
LB 160-6943/1-B LB	Method Blank	TCLP	Solid	6010C	6950
LCS 160-6950/2-A	Lab Control Sample	Total/NA	Solid	6010C	6950

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
160-304-1	SFPR-002	TCLP	Solid	7470A	6985
160-304-1 MS	SFPR-002	TCLP	Solid	7470A	6985
160-304-1 MSD	SFPR-002	TCLP	Solid	7470A	6985
LB 160-6922/1-B LB	Method Blank	TCLP	Solid	7470A	6985
LCS 160-6985/2-A	Lab Control Sample	Total/NA	Solid	7470A	6985

General Chemistry

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
160-304-1	SFPR-002	TCLP	Solid	6010C	6950
160-304-1 MS	SFPR-002	TCLP	Solid	6010C	6950
160-304-1 MSD	SFPR-002	TCLP	Solid	6010C	6950
LB 160-6943/1-B LB	Method Blank	TCLP	Solid	6010C	6950
LCS 160-6950/2-A	Lab Control Sample	Total/NA	Solid	6010C	6950
Analysis Batch: 6998					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-304-1	SFPR-002	TCLP	Solid	7470A	6985
160-304-1 MS	SFPR-002	TCLP	Solid	7470A	6985
160-304-1 MSD	SFPR-002	TCLP	Solid	7470A	6985
LB 160-6922/1-B LB	Method Blank	TCLP	Solid	7470A	6985
LCS 160-6985/2-A	Lab Control Sample	Total/NA	Solid	7470A	6985
General Chemistry	v				
Analysis Batch: 6716	,				
	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
Analysis Batch: 6716		Prep Type Total/NA	Matrix Solid	Method Moisture	Prep Batch
Analysis Batch: 6716 Lab Sample ID	Client Sample ID				Prep Batch
Analysis Batch: 6716 Lab Sample ID 160-304-1	Client Sample ID				Prep Batch
Analysis Batch: 6716 Lab Sample ID 160-304-1 Prep Batch: 6946	Client Sample ID SFPR-002	Total/NA	Solid	Moisture	<u>.</u>
Analysis Batch: 6716 Lab Sample ID 160-304-1 Prep Batch: 6946 Lab Sample ID	Client Sample ID SFPR-002 Client Sample ID	Total/NA Prep Type	Solid Matrix	Moisture	<u>.</u>
Analysis Batch: 6716 Lab Sample ID 160-304-1 Prep Batch: 6946 Lab Sample ID 160-304-1	Client Sample ID SFPR-002 Client Sample ID SFPR-002	Total/NA Prep Type Total/NA	Solid Matrix Solid	Moisture Method Distill/Phenol	<u>.</u>
Analysis Batch: 6716 Lab Sample ID 160-304-1 Prep Batch: 6946 Lab Sample ID 160-304-1 160-304-1 DU	Client Sample ID SFPR-002 Client Sample ID SFPR-002 SFPR-002 SFPR-002	Total/NA Prep Type Total/NA Total/NA	Solid Matrix Solid Solid Solid	Moisture Method Distill/Phenol Distill/Phenol	<u>.</u>
Analysis Batch: 6716 Lab Sample ID 160-304-1 Prep Batch: 6946 Lab Sample ID 160-304-1 160-304-1 160-304-1 DU 160-304-1 MS	Client Sample ID SFPR-002 Client Sample ID SFPR-002 SFPR-002 SFPR-002 SFPR-002	Total/NA Prep Type Total/NA Total/NA Total/NA	Solid Matrix Solid Solid Solid	Moisture Method Distill/Phenol Distill/Phenol Distill/Phenol	<u>.</u>
Analysis Batch: 6716 Lab Sample ID 160-304-1 Prep Batch: 6946 Lab Sample ID 160-304-1 160-304-1 DU 160-304-1 MS LCS 160-6946/2-A	Client Sample ID SFPR-002 Client Sample ID SFPR-002 SFPR-002 SFPR-002 SFPR-002 Lab Control Sample	Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Matrix Solid Solid Solid Solid Solid	Moisture Method Distill/Phenol Distill/Phenol Distill/Phenol Distill/Phenol	<u>.</u>
Analysis Batch: 6716 Lab Sample ID 160-304-1 Prep Batch: 6946 Lab Sample ID 160-304-1 160-304-1 DU 160-304-1 MS LCS 160-6946/2-A MB 160-6946/1-A	Client Sample ID SFPR-002 Client Sample ID SFPR-002 SFPR-002 SFPR-002 SFPR-002 Lab Control Sample	Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Matrix Solid Solid Solid Solid Solid	Moisture Method Distill/Phenol Distill/Phenol Distill/Phenol Distill/Phenol	<u>.</u>
Analysis Batch: 6716 Lab Sample ID 160-304-1 Prep Batch: 6946 Lab Sample ID 160-304-1 160-304-1 160-304-1 DU 160-304-1 MS LCS 160-6946/2-A MB 160-6946/1-A Analysis Batch: 7012	Client Sample ID SFPR-002 Client Sample ID SFPR-002 SFPR-002 SFPR-002 Lab Control Sample Method Blank	Total/NA Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Matrix Solid Solid Solid Solid Solid	Moisture Method Distill/Phenol Distill/Phenol Distill/Phenol Distill/Phenol	Prep Batch

Prep Batch: 7013

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
160-304-1	SFPR-002	Total/NA	Solid	7.3.3	
160-304-1 DU	SFPR-002	Total/NA	Solid	7.3.3	
160-304-1 MS	SFPR-002	Total/NA	Solid	7.3.3	

Client: Tetra Tech EM Inc. Project/Site: Waste Characterization

General Chemistry (Continued)

Prep Batch: 7013 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCS 160-7013/2-A ^2	Lab Control Sample	Total/NA	Solid	7.3.3	
MB 160-7013/1-A	Method Blank	Total/NA	Solid	7.3.3	
Prep Batch: 7014					

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
160-304-1	SFPR-002	Total/NA	Solid	7.3.4	
160-304-1 DU	SFPR-002	Total/NA	Solid	7.3.4	
160-304-1 MS	SFPR-002	Total/NA	Solid	7.3.4	
LCS 160-7014/2-A	Lab Control Sample	Total/NA	Solid	7.3.4	
MB 160-7014/1-A	Method Blank	Total/NA	Solid	7.3.4	

Prep Batch: 7015

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-304-1	SFPR-002	Total/NA	Solid	DILeach_Prep	
160-304-1 DU 	SFPR-002	Total/NA	Solid	DILeach_Prep	

Analysis Batch: 7016

ł	Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
	160-304-1	SFPR-002	Total/NA	Solid	9045D	7015
1	160-304-1 DU	SFPR-002	Total/NA	Solid	9045D	7015
)	LCS 160-7016/5	Lab Control Sample	Total/NA	Solid	9045D	

Analysis Batch: 7017

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-304-1	SFPR-002	Total/NA	Solid	1010A	
160-304-1 DU	SFPR-002	Total/NA	Solid	1010A	
LCS 160-7017/3	Lab Control Sample	Total/NA	Solid	1010A	
MB 160-7017/2	Method Blank	Total/NA	Solid	1010A	

Analysis Batch: 7054

EPA ARCHIVE DOCUMENT

U

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-304-1	SFPR-002	Total/NA	Solid	9034	7014
160-304-1 DU	SFPR-002	Total/NA	Solid	9034	7014
160-304-1 MS	SFPR-002	Total/NA	Solid	9034	7014
LCS 160-7014/2-A	Lab Control Sample	Total/NA	Solid	9034	7014
MB 160-7014/1-A	Method Blank	Total/NA	Solid	9034	7014

Analysis Batch: 7163

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-304-1	SFPR-002	Total/NA	Solid	9012	7013
160-304-1 DU	SFPR-002	Total/NA	Solid	9012	7013
160-304-1 MS	SFPR-002	Total/NA	Solid	9012	7013
LCS 160-7013/2-A ^2	Lab Control Sample	Total/NA	Solid	9012	7013
MB 160-7013/1-A	Method Blank	Total/NA	Solid	9012	7013

Analysis Batch: 7275

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
160-304-1	SFPR-002	Total/NA	Solid	9066	6946
160-304-1 DU	SFPR-002	Total/NA	Solid	9066	6946
160-304-1 MS	SFPR-002	Total/NA	Solid	9066	6946
LCS 160-6946/2-A	Lab Control Sample	Total/NA	Solid	9066	6946
MB 160-6946/1-A	Method Blank	Total/NA	Solid	9066	6946

Method: 8260C - Volatile Organic Compounds by GC/MS

M	a	ri	X:	S	ol	id

				Percent Su	rrogate Rec
		BFB	12DCE	TOL	DBFM
Lab Sample ID	Client Sample ID	(67-147)	(51-150)	(49-150)	(49-150)
160-304-1	SFPR-002	111	116	108	103
160-304-1 MS	SFPR-002	117	117	114	114
160-304-1 MSD	SFPR-002	123	111	115	108
LCS 160-6980/2	Lab Control Sample	105	110	107	110
MB 160-6980/1	Method Blank	101	109	102	101

BFB = 4-Bromofluorobenzene (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid

				Percent Su	rogate Rec
		BFB	12DCE	TOL	DBFM
Lab Sample ID	Client Sample ID	(84-120)	(83-117)	(85-115)	(85-115)
LCS 160-6982/4	Lab Control Sample	99	101	105	105
Surrogate Legend BFB = 4-Bromofluoro	benzene (Surr)				
12DCE = 1,2-Dichlor					
TOL = Toluene-d8 (S	urr)				

DBFM = Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid

				Percent Su	rogate Rec
		BFB	12DCE	TOL	DBFM
Lab Sample ID	Client Sample ID	(84-120)	(83-117)	(85-115)	(85-115)
160-304-1	SFPR-002	101	103	103	102
160-304-1 MS	SFPR-002	101	104	104	106
160-304-1 MSD	SFPR-002	100	103	102	104
LB 160-6863/1-A LB	Method Blank	101	102	102	100

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Matrix: Solid

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Percent Surrogate Recovery (Acceptance Limits) 2FP твр NBZ PHL трн FBP (44-95) (44-117) (46-98) (46-99) (47-127) (50-103) Lab Sample ID **Client Sample ID** 160-304-1 SFPR-002 72 83 76 76 83 77 160-304-1 MS SFPR-002 68 84 70 74 78 75 160-304-1 MSD SFPR-002 71 87 74 78 80 77

Prep Type: Total/NA

Prep Type: TCLP

Prep Type: Total/NA

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid								Prep Type: Total/NA
				Percent Su	rrogate Reco	very (Accept	ance Limits)
		2FP	TBP	NBZ	PHL	TPH	FBP	
Lab Sample ID	Client Sample ID	(44-95)	(44-117)	(46-98)	(46-99)	(47-127)	(50-103)	
LCS 160-6768/2-A	Lab Control Sample	73	83	74	76	99	76	
MB 160-6768/1-A	Method Blank	79	73	78	83	101	77	

Surrogate Legend

2FP = 2-Fluorophenol (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = Terphenyl-d14 (Surr)

FBP = 2-Fluorobiphenyl (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid								Prep Type: Total/NA
				Percent Su	rrogate Recov	very (Accept	ance Limits)
		ТВР	NBZ	PHL	ТРН	FBP	2FP	
Lab Sample ID	Client Sample ID	(50-101)	(45-102)	(40-95)	(56-118)	(42-95)	(38-98)	
LCS 160-6958/2-A	Lab Control Sample	78	71	63	101	64	66	

Surrogate Legend

DOCUMENT

EPA ARCHIVE

TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = Terphenyl-d14 (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid

Prep Type: TCLP

-		Percent Surrogate Recovery (Acceptance Limits)					
		ТВР	NBZ	PHL	TPH	FBP	2FP
Lab Sample ID	Client Sample ID	(50-101)	(45-102)	(40-95)	(56-118)	(42-95)	(38-98)
160-304-1	SFPR-002	73	64	51	98	59	56
160-304-1 MS	SFPR-002	77	67	53	97	62	57
160-304-1 MSD	SFPR-002	81	74	60	101	70	64
LB 160-6862/1-B LB	Method Blank	79	72	60	104	67	65

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = Terphenyl-d14 (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

Prep Type: Total/NA

Method: 8015B - Nonhalogenated Organic Compounds - Direct Injection (GC)

Matrix: Solid			Prep Type: Soluble
			Percent Surrogate Recovery (Acceptance Limits)
		IBA1	
Lab Sample ID	Client Sample ID	(40-140)	
160-304-1	SFPR-002	54	
160-304-1 MS	SFPR-002	100	
160-304-1 MSD	SFPR-002	97	
LCS 160-7049/2-A	Lab Control Sample	97	
MB 160-7049/1-A	Method Blank	105	
Surrogate Legend			

IBA = Isobutyl alcohol

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Solid

				Percent Su	rrogate Reco
		DCB1	DCB2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(69-131)	(69-131)	(74-121)	(74-121)
LCS 160-7009/2-A	Lab Control Sample	70	70	79	75
LCSD 160-7009/3-A	Lab Control Sample Dup	70	71	82	78
MB 160-7009/1-A	Method Blank	63 X	64 X	78	74

Surrogate Legend

DCB = DCB Decachlorobiphenyl (Surr)

TCX = Tetrachloro-m-xylene

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Solid							Prep Type: TCLF
				Percent Su	rogate Reco	very (Acceptance Limits)	
		DCB1	DCB2	TCX1	TCX2		
Lab Sample ID	Client Sample ID	(69-131)	(69-131)	(74-121)	(74-121)		
160-304-1	SFPR-002	72	71	84	81		
Surrogate Legend							

Surrogate Legend

EPA ARCHIVE DOCUMENT

DCB = DCB Decachlorobiphenyl (Surr)

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid			Prep Type: Total/NA
			Percent Surrogate Recovery (Acceptance Limits)
		DCB1	
Lab Sample ID	Client Sample ID	(54-150)	
160-304-1	SFPR-002	124	
160-304-1 MS	SFPR-002	114	
160-304-1 MSD	SFPR-002	129	
LCS 160-6772/2-A	Lab Control Sample	92	
MB 160-6772/1-A	Method Blank	89	
Surrogate Legend			

DCB = DCB Decachlorobiphenyl (Surr)

Method: 8151A - Herbicides (GC)

Matrix:	Solid

latrix: Solid			Prep Type: Total/NA
-			Percent Surrogate Recovery (Acceptance Limits)
		DCPA1	
Lab Sample ID	Client Sample ID	(56-147)	
LCS 160-6960/2-A	Lab Control Sample	126	
Surrogate Legend			

DCPA = 2,4-Dichlorophenylacetic acid

Method: 8151A - Herbicides (GC)

Prep Type: TCLP

		Percent Surrogate Recovery (Acceptance Limits)
	DCPA1	
Client Sample ID	(56-147)	
SFPR-002	120	
SFPR-002	124	
SFPR-002	123	
Method Blank	117	
	SFPR-002 SFPR-002 SFPR-002	Client Sample ID (56-147) SFPR-002 120 SFPR-002 124 SFPR-002 123

Surrogate Legend

DCPA = 2,4-Dichlorophenylacetic acid

Sample Summary

Client: Tetra Tech EM Inc. Project/Site: Waste Characterization

13

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
160-304-1	SFPR-002	Solid	07/16/12 00:00	07/17/12 11:00

APPENDIX E

DIOXIN TEQ CALCULATIONS (CD)

APPENDIX F

EXCAVATED SOIL/DEBRIS DISPOSAL RECORDS

HEALTH The following special	waste stream has be		Permit	IESI MO CHAMP	PLF
Registration Number	5213s - 121107				
Waste Description:	dioxin contaminated s	oil & waste roofir	ng shingles		
Generation Rate:	20 cubic yard	is			
Waste Location:	173 Strecker Rd			Zip	63011
Generator:	CLAYMONT DEVELC WESLEY BYRNE	PMENT			
he approved special	any: SEAGULL ENVI waste hauler* is: IE: licensed special waste haul	51		ompany must be pre	approved by Department
in order to ensure that only f Health staff.	waste hauler* is: IE	61 ers are utilized, cha		Box C	hecked if
The approved special in order to ensure that only of Health staff.	waste hauler* is: IE: licensed special waste haul	61 ers are utilized, cha on: 11/7/	anges to the hauling of 2012 Date: 8/7/2012	Box C Approv	
The approved special in order to ensure that only f Health staff. Your special waste pe	waste hauler* is: IE licensed special waste haul ermit is due to expire o	SI ers are utilized, cha on: 11/7/ E	anges to the hauling c 12012	Box C Approv	hecked if
The approved special in order to ensure that only f Health staff. Your special waste pe Guduu Signeture of Dir	waste hauler* is: IE licensed special waste hauf ermit is due to expire of for	SI ers are utilized, cha on: 11/7/ E ized Agent	anges to the hauling of 2012 Date: 8/7/2012	Box C Approv	hecked if

. _____

IESI MO CHAMP LANDFILL

NON HAZARDOUS SPECIAL WASTE MAI	ANIFEST
---------------------------------	---------

IES

Generator Name:	Claymont Development		
Generator Address:	173 Strecker Road, Wildwood, Mo	0	
St. Louis County Per	mit #: 5213	Expires:	11/7/2012
Generator/Authorized	Signature:	Date:	8/7/12
Transporter Name:	IESI North	Truck #:	
Driver Signature:			
Designated Landfill –	IESI MO Champ Landfill		
Landfill Signature:		Date:	
Quantity:	(Tons	IESI Ticket #	
Bill To; IESI Nor	th (# 46055)	Job #:	5213