

Decision Documents for Atrazine

Combined PDF document consists of the following:

- Finalization of Atrazine IRED, and Completion of Tolerance Reassessment and Reregistration Eligibility Process (April 6, 2006)
- Revised Atrazine IRED (October 31, 2003)
- Atrazine IRED (January 2003)

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON D.C., 20460

OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

MEMORANDUM

- **DATE:** April 6, 2006
- **SUBJECT:** Atrazine: Finalization of Interim Reregistration Eligibility Decision and Completion of Tolerance Reassessment and Reregistration Eligibility Process
- FROM: Diane Sherman, Chemical Review Manager Special Review Branch Special Review and Reregistration Division (7508P) Office of Pesticide Programs
- **THRU:** Anne Overstreet, Team Leader Special Review Branch Special Review and Reregistration Division (7508P) Office of Pesticide Programs
- TO: Robert McNally, Branch Chief Special Review Branch Special Review and Reregistration Division (7508P) Office of Pesticide Programs
- CC: Debbie Edwards, Director Special Review and Reregistration Division (7508P) Office of Pesticide Programs

Catherine Eiden, Branch Chief Reregistration Branch II Health Effects Division (7509P) Office of Pesticide Programs

Robert Perlis, Assistant General Counsel Andrea Medici, Attorney Pesticides and Toxic Substances Law Office (2333A) Office of General Counsel On January 31, 2003 EPA issued an Interim Reregistration Eligibility Decision (IRED) for the herbicide atrazine. On October 31, 2003 EPA issued a Revised IRED for atrazine. In these documents, the Agency assessed whether pesticide products containing atrazine as an active ingredient were eligible for reregistration considering all relevant issues except those relating to cumulative risks associated with potential exposures to atrazine and other structurally-related members of the chlorinated triazine class of pesticides, including simazine, propazine, and their three chlorinated degradates. These pesticides share a common neuroendocrine mechanism of toxicity which results in both reproductive and developmental consequences. Before tolerances can be considered fully reassessed or the Agency can make a final determination of reregistration eligibility, the Food Quality Protection Act (FQPA) requires the Agency to evaluate food tolerances on the basis of cumulative risk from substances sharing a common mechanism of toxicity.

The Agency recently completed its cumulative risk assessment for the chlorinated triazine class of pesticides and has concluded that, with the mitigation measures in the 2006 simazine Reregistration Eligibility Decision and the 2003 atrazine IREDs, the cumulative risks associated with these pesticides are below the Agency's level of concern. The cumulative risk assessment and supporting documents are available in the public docket EPA-HQ-OPP-2005-0481 located on-line in the Federal Docket Management System (FDMS) <u>http://www.regulations.gov</u>. Based on that assessment, EPA has now concluded, after taking into account the cumulative risks associated with exposures to all of the triazines, that all of the established tolerances for the triazine herbicides propazine, simazine, and atrazine meet the safety standard under Section 408(b)(2)(A) of the FFDCA, taking into account the provisions of Sections 408(b)(2)(C) and 408(b)(2)(D).

In other words, the Agency has found that there is a reasonable certainty that no harm will result to the general U.S. population, infants, children, or other major identifiable subgroups of consumers from aggregate exposure (from food, drinking water, and non-occupational sources) to cumulative residues of atrazine and the other chlorinated triazine pesticides. With that finding, and the earlier findings contained in the 2003 IREDs for atrazine, the Agency has now completed its task under section 4(g) of FIFRA of determining whether products containing atrazine are eligible for reregistration, and it has completed its reassessment of atrazine tolerances under section 408(q) of the FFDCA. Please note that individual registrations of products containing atrazine will not be considered reregistered until they have successfully completed product-specific reregistration.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

CERTIFIED MAIL

Dear Registrants:

This is to inform you that the Environmental Protection Agency (hereafter referred to as EPA or the Agency) has completed its revised Atrazine Interim Reregistration Eligibility Decision (IRED), consistent with the Consent Decree, as amended, entered in <u>Natural Resources</u> <u>Defense Council v. Whitman</u>, Case Number C -99-3701 CAL, N. D. California (2002)). It does not alter the conclusions of the January 31, 2003 IRED document except as described below. There will be a 90-day public comment period for this document. At a later date, the Agency will publish a comprehensive atrazine IRED incorporating changes, if any, resulting from public comment and combining the January and October documents into one document.

In August 2002, the court supervising the implementation of the Consent Decree granted a request from EPA and Natural Resources Defense Council (NRDC) that the Decree's deadline for the atrazine IRED be extended. The new schedule included the completion of an IRED by January 31, 2003, and a revised IRED by October 31, 2003. The amended Consent Decree states that the revised Interim RED for atrazine must address the following: (1) data received by EPA prior to February 28, 2003, relating to the potential effects of atrazine on amphibian species; and (2) to the extent not addressed in the January 31, 2003 Interim RED, data, received prior to February 28, 2003, relating to the association between atrazine exposure and the incidence of prostate or other cancer in humans. The amended Consent Decree also specifies that EPA is to hold FIFRA Science Advisory Panel (SAP) meetings on these two issues.

Ecological monitoring of watersheds was required in the January IRED due to the potential for community-level and population-level risk to aquatic ecosystems from atrazine. The January IRED states that to mitigate these ecological risks to aquatic communities, the Agency is requiring that atrazine registrants, in consultation with EPA, develop a program under which the registrants monitor for atrazine concentrations and mitigate environmental exposures if EPA determines that mitigation is necessary. The program will focus on watershed impacts of atrazine use.

This revision to the January 31, 2003 IRED consists of three sections: 1) potential

association between atrazine exposure and the incidence of prostate cancer and other cancers in humans; 2) potential effects of atrazine on amphibian endocrinology and development; and 3) ecological monitoring and mitigation of atrazine in watersheds. In each section, this document summarizes the conclusions in the January IRED pertaining to the section, developments since the IRED, and next steps, as appropriate. The technical documents supporting these revisions are listed below and appended to this IRED.

- A. Review of Atrazine Cancer Epidemiology,
- B. Potential Effects of Atrazine on Amphibian Gonadal Development,
- C. Final Reports of the Atrazine Ecological and Monitoring Subgroups,
- D. Atrazine Ecological Subgroup Final Report: Recommendations for aquatic community Level of Concern (LOC) and method to apply LOC(s) to monitoring data,
- E. Microcosm and Mesocosm Data,
- F. Atrazine Toxicity Data for CASM Simulations,
- G. CASM Results: Steinhaus Similarity Toxicity Scenario,
- H. Comparison of Annual Average CASM Steinhaus Similarity for a Series of Chemographs Calculated with the Logistic Regression vs. Actual CASM Simulations,
- I. Comparison of Simulated Change in Annual Production for Phytoplankton, Periphyton, Macrophytes, Zooplankton, Benthic Invertebrates, and Fish for CASM Parameterizations,
- J. Decrease in Annual Total Production,
- K. Atrazine Ecological Monitoring Program Subgroup: Recommendations for Monitoring Design, and
- L. Assessment of Potential Mitigation Measures for Atrazine, February 13, 2003.

Potential Association Between Atrazine Exposure and Prostate Cancer and Other Cancers in Humans

January 31, 2003 IRED

The Agency's human health risk assessment for the January 31, 2003, IRED did not include a quantitative risk assessment for cancer due to a determination by the EPA, consistent with conclusions reached by the SAP (June 2000), that it is unlikely that atrazine's cancer mode of action in the Sprague-Dawley rat is operative in humans. EPA's Cancer Assessment Review Committee (CARC), in accordance with the 1999 Draft Guidelines for Carcinogen Risk Assessment, classified atrazine as "not likely to be carcinogenic to humans."

The review of the cancer epidemiology study for the January 31, 2003, IRED did, however, include epidemiological data on workers at the Syngenta St. Gabriel Louisiana plant where atrazine is manufactured. The study reported a statistically significant increase in the incidence of prostate cancer among plant workers. The Agency, upon review of this study, requested additional information on the exposure profile of the employees diagnosed with prostate cancer and this information was provided and reviewed. Based on this review, it appeared that most of the increase in prostate cancer incidence at the St. Gabriel plant was likely due to intensive prostate specific antigen (PSA) screening of employees. The study was insufficiently large and had limitations that prevent ruling out atrazine as a potential contributor to the increase observed. On balance, however, a role for atrazine seemed unlikely because prostate cancer was found primarily in current employees who received intensive PSA screening; there was no increase in advanced tumors or mortality; and proximity to atrazine manufacturing did not appear to be correlated with risk.

Other cancers besides prostate were found to have an elevated, though not statistically significant, increase in risk at the St. Gabriel plant. Other studies have suggested an increased risk for ovarian, breast, and other cancers, including non-Hodgkin's lymphoma (NHL). However, EPA had previously concluded that these studies were at best preliminary and should not serve as a basis for implicating atrazine as a human carcinogen due to their methodological limitations.

July 17, 2003 SAP

To further analyze the question of exposure to atrazine and prostate cancer, an SAP meeting was held on July 17, 2003 (http://www.epa.gov/scipoly/sap/index.htm). Given the limited nature of the new cancer data that stimulated the request for a second SAP meeting. EPA's submission to the SAP focused primarily on the new prostate cancer data rather than the epidemiological data that the SAP in 2000 had judged inconclusive or later studies received since 2000 that EPA found to be inconclusive. EPA asked the Panel to comment on the Agency's conclusion regarding prostate cancer and particularly the preliminary results from a nested case-control study of the St. Gabriel manufacturing plant in Louisiana. In addition to this study, the SAP was provided with other epidemiological studies on atrazine exposure and prostate cancer, a review by the Agency discussing the St. Gabriel data and epidemiological data bearing on prostate cancers, comments from four external peer reviewers, a Syngenta-sponsored expert panel review, and comments by the Natural Resources Defense Council. As stated in the January IRED, EPA's view of the study was that the increase in PSA screening for the St. Gabriel workers could explain the increase in prostate cancer observed in these workers and therefore a role for atrazine seemed unlikely. EPA acknowledged, however, that due to limitations in the St. Gabriel study, atrazine could not be ruled out as a potential causal factor.

The SAP's analysis of the St. Gabriel study differed to a degree from the Agency's conclusion. The SAP did conclude that "the increase in Prostate Specific Antigen (PSA) screening at the St. Gabriel plant likely led to an increase in the detection of cases of prostate cancer." Further, the Panel noted that "[s]ubstantive and persuasive arguments have been made to support the EPA's conclusion that PSA screening could explain the observed increase in prostate cancer incidence in the workers." Nonetheless, the Panel did not believe there was sufficient evidence to conclude that it was "unlikely" that atrazine had a role in the increased prostate cancer cases seen in the St. Gabriel study "given the severe limitations of the St. Gabriel study, particularly those pertaining to small sample size, questionable exposure assessment and

lack of an appropriate comparison group." According to the SAP, PSA screening may be only a "partial explanation" for the increase in prostate cancer seen in the St. Gabriel study and that "atrazine cannot be ruled out as a potential cause."

The Agency agrees with the SAP's analysis and has rewritten its conclusion as follows:

The increase in prostate cancer incidence at the St. Gabriel plant in Louisiana is consistent with the intensive PSA screening. This is because prostate cancer was found primarily in active employees who received intensive PSA screening, there was no increase in advanced tumors or mortality, and proximity to atrazine manufacturing did not appear to be correlated with risk. No evidence was identified, such as dose-response evidence, that permit a determination that some of the increase was likely due to exposure to atrazine although atrazine exposure cannot be ruled out at this time as a cause. However, the study was insufficiently large and suffered from other limitations that prevent a determination that all of the increase in prostate cancer was probably due to the intensive screening program. Therefore, EPA concludes that the St. Gabriel study does not contribute any evidence supporting atrazine as a likely human carcinogen. (see Appendix A)

The SAP suggested that the Agency consider additional analysis of the St. Gabriel cohort. However, the resulting sample size would still limit the opportunity to draw further conclusions. The Agency questions whether additional analysis is warranted for other potential risk factors (such as smoking, diet and previous work history, and non-occupational or pre-employment exposure to triazine herbicides). Because of the way the study was designed, this information is not available to investigators and it may not be feasible to obtain such information for the St. Gabriel workers.

The other epidemiologic studies investigating the relationship between atrazine exposure and prostate cancer did not alter the Panel's opinion that the evidence presented is inadequate to support the Agency's conclusion of atrazine as an "unlikely" cause of prostate cancer seen in the St. Gabriel study. One study by Mills (1998) found a borderline statistically significant positive association between atrazine use by county with prostate cancer incidence rates in African American males. A second study by Alavanja et al. (2003) showed no association of selfreported atrazine exposure with prostate cancer in cohort analysis of pesticide applicators.

Epidemiological Data on Other Cancers

EPA has re-reviewed the epidemiological data regarding atrazine and cancer that were examined for the SAP meetings on atrazine in 2000 and 2003. EPA has also reviewed data that have become available since the latest meeting of the SAP in 2003. The results of those reviews are also summarized in Appendix A to this document. In brief, the Agency does not find any results among the available studies that would lead us to conclude that a potential cancer risk is likely from exposure to atrazine.

Even though the epidemiological evidence and animal data, when viewed separately, do not support a positive cancer finding for atrazine, EPA examined the totality of animal and human data to determine if that approach showed that atrazine was likely to cause a carcinogenic response in humans. Specifically, EPA reviewed the available animal data to determine if a mechanism could be identified which supports the biological plausibility of atrazine as a human carcinogen taking into account the tumors that were identified in the epidemiological data. This review showed that (1) lymphomas, including NHL, were generally not seen in atrazine animal bioassays; (2) a mechanistic role for atrazine contributing to NHL has not been identified in laboratory studies; (3) tumors at any endocrine site other than mammary gland tumors in female SD rats (e.g., prostate, ovarian tumors) have not been identified in atrazine bioassays; (4) the SAP concluded in 2000 that the mammary gland tumors in rats caused by atrazine are produced via a mechanism not relevant to humans; and (5) the endocrine tumors that have been raised in epidemiological studies (other than mammary gland tumors) can not be biologically tied to atrazine's mode of action (i.e., decrease prolactin, decrease luteinizing hormone (LH) and suppression of ovulation). Thus, at this time, joint consideration of the available animal cancer and mode of action data and epidemiological studies, does not indicate that atrazine is likely to cause cancer in humans.

Conclusion

In the January 31, 2003 IRED, EPA concluded that, considering the animal data and the human epidemiological data, atrazine is "not likely to be carcinogenic in humans". That conclusion allowed EPA to find that there is a reasonable certainty of no harm from exposure to atrazine so far as cancer risk is concerned. Results in the St. Gabriel study and other recent epidemiological studies regarding atrazine's potential link to cancer do not alter that conclusion. Further, any weight attributable to these data is weakened by the data in animals that fail to reveal any mechanism of action for atrazine consistent with the cancers observed in the studies. Accordingly, EPA concludes that atrazine is not likely to be a human carcinogen."

Next Steps

Since the July 2003 SAP meeting, EPA has received two new pieces of information: (1) a report from the National Cancer Institute (NCI) re-analyzing previous epidemiologic studies of atrazine and non-Hodgkin's lymphoma using hierarchical techniques to adjust for the effects of multiple exposures; and (2) a nested case-control study conducted for Syngenta of workers at the St. Gabriel plant using more detailed job histories to evaluate exposure indices. The Agency plans to conduct a comprehensive review of both studies. EPA's preliminary view of these studies is discussed in Appendix A. EPA is also expecting to receive additional epidemiological studies and analyses concerning atrazine and cancer from the NCI's Agricultural Health Study in the next one to two years. These studies and analyses include the following: an update of the Agricultural Health Study on prostate cancer capturing additional prostate cancer cases; an analysis of all the non-Hodgkin's lymphoma cases reported in the Agricultural Health Study; and a special analysis of all cancers related to atrazine exposure in the same Agricultural Health Study in the NCI will complete these studies and analyses in Complete these studies and analyses in the NCI will complete these studies and analyses in the NCI will complete these studies and analyses in Complete these

mid-2005.

After all of the information has been submitted and reviewed, the Agency plans to convene another SAP meeting concerning atrazine and its possible association with carcinogenic effects. At that meeting, EPA intends to present the SAP with all of the data bearing on atrazine and cancer, including the old and new epidemiology studies. In the meantime, EPA will continue its review of all new data submissions. If at any time, results from any of the new data submissions raise significant questions that would benefit substantially from SAP review prior to submission of all of the data, the Agency will hold a SAP meeting before all aspects of the Agricultural Health Study are completed.

EPA intends to thoroughly review any SAP report from any future meeting, once issued, and to revise its determinations regarding the cancer potential of atrazine, as necessary. Any revisions will be included in either a revision to the October 31, 2003 IRED or the final reregistration decision for atrazine depending on the timing of the future SAP meeting relative to issuance of the final atrazine reregistration decision.

Potential Effects of Atrazine on Amphibian Endocrinology and Development

January 31, 2003 IRED

In the ecological risk assessment for the January 31, 2003 IRED, the Agency did not suggest that endocrine disruption, or potential effects on endocrine-mediated pathways, was regarded as a regulatory endpoint for ecological effects. Nor did the Agency have reliable evidence at that time to state that atrazine caused endocrine effects in the environment. The IRED stated that based on the existing uncertainties in the available database, atrazine should be subject to more definitive testing once the appropriate testing protocols have been established. The Agency was aware that several pertinent studies were being performed by researchers that may reduce some of the uncertainties in understanding potential atrazine effects on amphibian endocrinology and reproductive and developmental responses.

June 17-20, 2003 SAP

Since the January IRED, the Agency has conducted a comprehensive evaluation of the available data regarding the potential effects of atrazine on amphibian gonadal development and presented its assessment for external peer review to a SAP in June 2003. In a May 29, 2003 white paper, the Agency summarized seventeen studies consisting of both open literature and registrant-submitted laboratory and field studies involving both native and non-native species of frogs (see Appendix B). In its white paper the Agency concluded that none of the studies fully accounted for environmental and animal husbandry factors capable of influencing endpoints that the studies were attempting to measure. The Agency also concluded that the current lines-of-evidence did not show that atrazine produced consistent effects across a range of exposure concentrations and amphibian species tested.

Based upon this assessment, the Agency concluded and the SAP agreed that there is sufficient evidence to formulate a hypothesis that atrazine exposure may impact gonadal development in amphibians, but there are currently insufficient data to confirm or refute the hypothesis (http://www.epa.gov/oscpmont/sap/2003/June/junemeetingreport.pdf). Because of the inconsistency and lack of reproducibility across studies and an absence of a dose-response relationship in the currently available data, the Agency has determined that it does not change the conclusions reached in the January 31, 2003 IRED regarding atrazine's effects on amphibians.

Next Steps

Based on the conclusions from the Agency's white paper and recommendations of the SAP, the Agency will seek additional data to reduce uncertainty regarding the potential risk to amphibians (http://www.epa.gov/oscpmont/sap/2003/june/dataevaluationreports.htm). This data collection will follow the multi-tiered process outlined in the Agency's white paper. This approach to collecting additional information through further studies, which was endorsed by the SAP, can be used to address uncertainties associated with the potential causal relationships between atrazine exposure and gonadal development and characterize the nature of any concentration-response relationship.

Ecological Monitoring and Mitigation of Atrazine in Watersheds

January 31, 2003 IRED

The ecological risk assessment for the January IRED stated that the Agency has ecological risk concerns from the use of atrazine and identified the potential for community-level and population-level risk to aquatic ecosystems at prolonged concentrations of atrazine from 10 to 20 ppb. To mitigate these ecological risks to aquatic communities and to determine that atrazine is eligible for reregistration, the Agency required that atrazine registrants, in consultation with EPA, develop a program under which the registrants monitor for atrazine concentrations and mitigate environmental exposures if EPA determined that mitigation is necessary. This program would focus on watershed impacts of atrazine use.

The January IRED further stated that the program will include an appropriate ecological level of concern (LOC), identified by EPA; development of a protocol for a monitoring program that specifies the frequency, location, and timing of sampling, as well as an appropriate coordination with Total Maximum Daily Load (TMDL) programs; triggers for mitigation measures; and description of mitigation measures that will be taken if triggers are exceeded. This monitoring and mitigation program would be designed, conducted and implemented on a tiered watershed level and must be consistent with existing state and federal water quality programs.

Follow-up to January 31, 2003 IRED

The following description highlights how EPA developed the specifics of the ecological monitoring and mitigation program consistent with the January 2003 IRED. The Office of Pesticide Programs, the Office of Research and Development, and the Office of Water collaborated to integrate and develop this program.

Level of Concern (LOC)

The sensitive endpoint in the ecological assessment for atrazine is a change in the structure and function of primary producers in the aquatic community. Concentrations of atrazine that affect plant productivity and community structure typically occur at levels lower than those that directly intoxicate fish and aquatic invertebrates. By focusing on aquatic plant community structural changes, the most sensitive endpoint, the Agency intends to protect fish and invertebrates from the direct effects of atrazine as well as the effects that atrazine could have on the habitat and food sources of aquatic animals (see Appendices C- K).

The Level of Concern (LOC) was derived to ensure that the atrazine concentrations in watersheds will not cause significant changes in aquatic plant community structure. The LOC is based on an analysis of 25 microcosm and mesocosm studies cited in the Final Report of a report provided in Appendix D. To establish the LOC, it was necessary to quantify the results of the mesocosm and microcosm studies by rating their reported results based on the significance of the effects on aquatic plant productivity and community structure. Each study was analyzed to establish the reported effect(s) and the atrazine exposure profile, which reflects the magnitude, frequency and duration of atrazine concentrations in the study. This analysis revealed a wide range of study designs and quality and also indicated that a wide range of atrazine exposure profiles could result in significant change in aquatic community productivity and structure. A method was developed to separate the reported results on plant community productivity and structure observed in these studies into those that were significant versus those with slight to no-effects.

Since atrazine exposure profiles in natural systems, in this case streams, will typically be complex, it was necessary to develop a method to analyze monitoring data to determine when monitored exposure profiles are functionally-equivalent to those profiles observed in mesocosm and microcosm studies showing significant changes when the monitored profiles are functionally-equivalent to those studies that showed no significant effects.

Using a range of atrazine exposure profiles representative of those that caused significant effects in the microcosm and mesocosm studies, as well as those that did not result in significant effects, an ecological food chain model that predicts changes in aquatic communities in streams (in this case, <u>Comprehensive Aquatic Systems Model</u>, CASM), was used to develop the means of interpreting whether or not any atrazine exposure profile observed in the monitoring study would likely be associated with a significant effect on aquatic communities. These analyses determined that a community similarity index (CSI) that quantifies the average changes in biomass for plant species of the modeled aquatic community, is the most useful model parameter to segregate those mesocosm and microcosm studies that exhibited significant effects from those

that did not. Conceptually, this index is consistent with the observed effects of atrazine on primary producers in aquatic ecosystems. More specifically, through this analysis it was determined that an average CSI change of 5% or greater over the course of a study reasonably discriminated micro- and mesocosm exposure profiles associated with significant effects (i.e., irreparable changes to ecosystems) from those that did not show significant effects.

Consequently, these analyses establish the LOC as any measured atrazine exposure profile obtained through a monitoring study that would result in a predicted 5% or greater average change in the CSI through the use of CASM. Additional analyses over the duration of the three year monitoring study will evaluate the use of additional aquatic community models (e.g., Aquatox), and comparable modeled indices, to provide additional model options for States, Tribes or other parties to evaluate data that may be collected in other monitoring programs.

Monitoring Program Protocol

The monitoring protocol is initially focused on flowing water bodies (i.e., streams) associated with corn and sorghum production (see Appendix K). Future efforts (see below) will address the need to monitor estuaries and water bodies associated with sugarcane production. In addition, results of raw water monitoring from the on-going atrazine monitoring program for drinking water, as described in the January 31, 2003 IRED, will be analyzed to determine its potential utility in evaluating potential ecological effects in static water bodies.

The purpose of the monitoring program in flowing waters is to estimate the magnitude and extent to which water bodies with the greatest potential vulnerability to atrazine exposure (primarily based on atrazine use and runoff potential) are exceeding the level of concern consistent with the atrazine ecological risk assessment, which was described above. The initial analyses identified three tiers of watersheds relevant to atrazine use in corn and sorghum. The first tier of approximately 10,000 watersheds had some level of atrazine use on corn and sorghum. The watersheds identified in this assessment were primarily at the 5th, or Hydrologic Unit Code (HUC)-10/11, level of a hierarchal system of mapping watersheds established by the United States Geological Survey (USGS). At this level, watersheds are typically 40,000 to 250,000 acres in size. From this first tier, a second tier of 5,860 HUC-10/11 watersheds was identified based on use intensities of 0.25 lb active ingredient (ai)/county acre or higher. From this second tier of watersheds, a third tier of 1,172 watersheds was identified based on their predicted potential to be among the most vulnerable to atrazine surface water loading from use on corn and sorghum. Through the development of a statistically-based survey design, EPA then selected 40 HUC-10/11 watersheds which will give a statistical representation of the third tier of 1,172 such watersheds predicted to be most potentially vulnerable. These 40 monitored watersheds are located in 10 states: Ohio, Indiana, Kentucky, Illinois, Iowa, Missouri, Nebraska, Minnesota, Tennessee, and Louisiana. The selected watersheds averaged 129 square miles in size, with a median size of 121 square miles. Monitoring sites (index sites) will be located in flowing water bodies within the 40 watersheds. Two years of monitoring results from these sites will be compared to the LOC values. The registrant shall collect monitoring samples every 4 days prior to, during, and following the growing season. In addition, the registrant is required to

monitor 10 watershed sites daily following flow events to better estimate temporal variability for the data collected in the remaining 30 watersheds. Based on the results from the two-year monitoring study in each watershed, as interpreted by the LOC, the Agency will evaluate the need for more monitoring and/or mitigation actions in the 40 HUC-10/11 watersheds and the implications, if any, for the larger set of 1,172 most potentially vulnerable watersheds.

Future Monitoring Decisions for Other Water Bodies

Estuaries will not be monitored in 2004. Discussions will be conducted with the Oceans and Coastal Protection Division in the Office of Wetlands, Oceans, and Watersheds (OWOW) to review all relevant data to determine whether and to what extent monitoring for levels of atrazine should be undertaken for estuaries. The role of dilution and transport in estuaries must be determined. It may be possible to gather some information on these parameters by looking at nitrate concentrations or other chemical as a marker to ascertain how to approach an estuary monitoring program. This analysis will be completed by March 2004. If it is determined a monitoring study is required, it is recognized additional efforts will be necessary to develop a monitoring program.

To evaluate the potential for ecological concerns in static water bodies (i.e., lakes and reservoirs), raw water data on atrazine concentrations collected from the approximately 140 Community Water Systems that are being monitored for human health concerns will initially be used. In addition, the registrant will provide historical data from the Voluntary Monitoring Program (VMP) sites. The methods used to determine the LOC for flowing water bodies are amenable for use in static water bodies. The EPA must determine on a statistical and ecosystem basis to what extent the monitoring data from the drinking water monitoring program should be interpreted for a given water body and how statistical inferences from the results of this set of static water bodies can be made to a larger population of potentially vulnerable static water bodies. This information will provide the basis for developing a monitoring strategy for static water bodies.

A strategy will be developed to select the most appropriate locations and number of sites for monitoring atrazine in sugarcane growing areas. The sugarcane use area is a unique situation which has clear freshwater and estuarine issues. As a pilot, the registrant has offered to monitor four additional sites distributed between Louisiana and Florida with one being the Iberville Community Water System already designated for increased monitoring in the drinking water program. The selection of these pilot sites for evaluating potential ecological effects and the protocol for monitoring will be completed by March 2004.

Triggers for Mitigation Measures in Flowing Water Bodies

For the 40 watersheds, the registrant shall monitor an index site within the watershed for two years, regardless if a decision to initiate remediation occurs in the first year. If monitoring within a watershed indicates exceedences of the 5% average CSI threshold, based on CASM model results, in each of the two years, the registrant will initiate and conduct a TMDL or

comparable watershed management program within the particular watershed where the exceedence occurred, consistent with the state's ongoing TMDL or watershed program. If a TMDL or comparable watershed management program is already in place by USDA, state, or other entity in a given watershed, the registrant will then work with these existing programs to address the atrazine exceedence. If an exceedence occurred in the first year of sampling within a watershed, the registrant will, at a minimum initiate stewardship outreach, preferably through an existing USDA or state-sponsored watershed management program if one exists.

If an index site in a watershed has exceeded the similarity threshold over a two year period, the registrant shall initiate and conduct a TMDL (or similar) program to reduce atrazine concentrations associated with the stream reach at the index site by additional monitoring and managing atrazine uses in those portions of the watershed that feed into the index site and result in the exceedences. At the same time, the registrant shall conduct additional monitoring at other sites in the watershed suspected to be similar to the index site in order to determine if other water bodies in the watershed also exceed the 5% similarity threshold. If these areas are determined to exceed the similarity threshold, then the registrant shall initiate and conduct TMDL (or similar) mitigation in those areas.

The registrant must also initiate and conduct remediation immediately in any watershed which shows an exceedence of \$ 15% of the CSI rather than wait for a second year of data. However, monitoring will still continue at the original index site in the second year.

If monitoring results indicate an exceedence in one of the two years for a given index site within a watershed, a decision regarding additional monitoring or other watershed management activities will be based on the specific data for the location and the results of the overall study. The data derived from all of the 40 watersheds will provide information needed to better quantify and interpret sampling variability in the context of the exceedence threshold. These future analyses will inform decision criteria for those cases where variability in monitoring data overlaps uncertainties in the LOC derivation.

For an index site within a watershed, if monitoring results indicate no exceedences of the 5% average similarity threshold index based on CASM model results in each of the two years, then no further action will be required in the watershed.

For all of the data collected in the 40 watersheds, interpretation of monitoring data after two years would include an assessment as to whether or not unusual meterological conditions (e.g., high or low rainfall) existed during the monitoring period. This could require a third year of sampling to make an informed decision on a watershed's condition.

In addition, if States or Tribes use the same or comparable LOC and monitoring protocols (e.g., comparable sampling frequencies and analytical techniques) at a selected stream reach outside of the 40 watersheds, as described in the ecological and atrazine monitoring subgroup reports (Appendix C-J), as well as, employ decision criteria comparable to those described above, the registrant will initiate and conduct a TMDL or comparable watershed management

program within that watershed if the State or Tribal data shows an exceedence of the LOC for two years, consistent with the state's ongoing TMDL or watershed program.

After the Agency receives the data from the 40 watersheds, it will be analyzed to interpret the status of the 1,172 Tier 2 watersheds. Due to the nature of this monitoring design it will be possible to make statistical inferences with the data collected from the 40 watersheds as to the magnitude and extent to which LOC exceedences could be occurring in the remaining tier of 1,172 watersheds considered to be the most potentially vulnerable. After these statistical inferences are completed, a decision about monitoring in the remaining 1,172 vulnerable watersheds will be made, with the understanding it is possible that further monitoring and/or mitigation may be required of the registrant in these other watersheds.

Description of Mitigation Measures

The specific techniques to be employed by the registrant to reduce atrazine loads in a watershed that has atrazine concentrations that exceed the LOC will be watershed specific and undertaken in partnership with any existing watershed management programs. The registrant will follow steps that are typically employed in the Clean Water Act TMDL program or similar management programs as follows:

1. Problem Identification -

Identify pollutant causing impairment and impaired water body and determine the pollutant reductions needed to achieve water quality standards (note that in this specific situation exceedence of the atrazine LOC will have already established an impairment and a cause, with the understanding that for a given water body additional pollutants could also be contributing to biological impairment).

- 2. Current Situation and Desired Objective -Indicate desired outcome of TMDL process.
- 3. Source Assessment -

Identify pollution source and contribution to impairment.

4. Allocation of loads -

Allocate the pollutant loadings among the various pollutant sources.

5. Implementation -

Describe actions to mitigate the sources of pollution (e.g., best management practices).

6. Follow-up Monitoring -

Determine effectiveness of implemented mitigation measures.

7. Feedback Mechanism -

Review of mitigation measures during implementation period to determine if adjustments are needed.

The Clean Water Act requires that States identify waters that fail to attain water quality standards and establish TMDLs at levels that attain or maintain their water quality standards. EPA is required to review and approve or disapprove the list of impaired waters and TMDLs. If EPA disapproves the State's list or the TMDL, EPA is required to identify the impaired waters or establish TMDLs. The States and EPA establish TMDLs in a particular watershed by determining pollutant loads that will allow the attainment of water quality standards, analyzing existing pollutant loads and sources, and specifying the pollutant load reductions necessary to attain water quality standards. TMDLs are implemented through existing Federal, State or local requirements and programs. EPA encourages TMDLs that are established and implemented as part of an overall watershed strategy for improving water quality.

The Agency expects that the TMDL process (or similar watershed management program) will result in mitigation measures that, when implemented, will effectively lower the level of atrazine to below the level of concern. These mitigation measures could include: buffer zones, different application or incorporation methods, restrictions on the timing of application due to rain, and lower application rates. Implementation of these controls also will include confirmatory follow up monitoring to insure that the atrazine levels are below the LOC. Given the rapid progress the States have made by incorporating TMDL approaches in watershed management programs, EPA is confident that management activities undertaken by the registrant consistent with meeting the loading reductions identified in a TMDL are expected to be successful in reducing loadings of atrazine. Since 1996, more than 9000 TMDLs have been established and approved, leading to activities that have improved water quality. Pollutant loadings have been reduced and water quality improved as reported by the Office of Water's Office of Wetlands, Oceans and Watersheds (see http://www.epa.gov/owow/tmdl/). In the unlikely event that implementation of loading reductions identified in TMDLs is not effective, the Agency reserves the right to take further action under FIFRA to mitigate this risk from atrazine and will consider, as appropriate, the benefits of atrazine use in the particular watershed.

Benefits of Atrazine Use

The total or national economic impact resulting from the loss of atrazine to control grass and broadleafed weeds in corn, sorghum and sugarcane would be in excess of 2.0 billion dollars per year if atrazine were unavailable to growers (Appendix L, "Assessment of Potential Mitigation Measures for Atrazine", February 13, 2003).

A watershed-specific analysis has not been factored into this assessment because of the uncertainty surrounding potentially impacted watersheds and any required mitigation. However, economic impacts could be expected to parallel those for drinking water as described below.

Specifically, EPA analyzed what would be the impact to the corn industry in areas in

watersheds contributing to Community Water Systems which find atrazine concentrations exceeding the Agency's level of concern, and found that growers would incur an average loss of 9 bushels per acre (nationwide corn yield averaged 138 bushels per acre in 2001), as well as an increased cost for a replacement herbicide. This yield loss plus increased herbicide cost may result in an average estimated loss of \$28 per acre. This translates to a yearly loss of 1.6 billion dollars of lost revenue annually nationwide.

Likewise, the impact to the sugarcane industry would also be substantial. If growers in the watersheds contributing to the Community Water Systems which find atrazine concentrations exceeding the Agency's level of concern, no longer had atrazine available to them, a 10 to 40 percent crop loss would be incurred along with an increase in alternative herbicide cost. This translates to a yearly loss of \$89.5 million but could be as much as \$343.6 million if a 40 percent loss were realized.

Finally, if atrazine were eliminated from the market, the most likely chemical broadleaf weed control options would be post-emergence applied herbicides (dicamba, 2,4-D, bromoxynil, and prosulfuron). Post-emergence application of herbicides carries certain risks. These include: 1) greater competition of the weeds with the crop early in the season as weed control is delayed into the growing season; 2) crop injury from herbicides applied directly to the emerged crop and weeds; and 3) if the opportunity to apply the herbicide is missed due to weather or some other factor, there are fewer or no emergency remedies for weed control. Thus, there are non-monetary costs that would be associated with the loss of atrazine as well as the substantial financial impacts.

Determination of Interim Reregistration Eligibility

The Agency has determined that atrazine products are eligible for reregistration provided that: (i) the circumstances described in this document (including implementation of any ecological risk mitigation measures identified through the monitoring program) are realized; (ii) any current data gaps and additional data needs are addressed; and, (iii) the consideration of the cumulative risk for the triazines supports a final reregistration eligibility decision. Further we have concluded that during the period of data collection and risk mitigation measures called for in this document, the benefits of continued use of atrazine will outweigh any potential ecological risk.

Although the Agency has not considered the cumulative risk for all the triazines, the Agency is issuing this amendment to the interim reregistration eligibility decision now in order to identify risk reduction measures that are necessary to support the continued use of atrazine. Based on the current evaluation of atrazine, the Agency has determined that atrazine products, unless used in accordance with the conditions of this document, would present risks inconsistent with FIFRA. Accordingly, should a registrant fail to implement any of the risk mitigation measures identified in this document, the Agency may take further regulatory action to address the risk concerns from the use of atrazine products.

US EPA ARCHIVE DOCUMENT

Because the Agency has not yet considered cumulative risk for all of the triazines, this reregistration eligibility decision does not fully satisfy the reassessment of the existing atrazine food residue tolerances as called for by the Food Quality Protection Act (FQPA). When the Agency has completed the cumulative assessment, atrazine tolerances will be reassessed in that light. At that time, the Agency will reassess atrazine along with the other triazine pesticides to complete the FQPA requirements and make a final reregistration eligibility determination. By publishing this interim decision on reregistration eligibility and requesting mitigation measures now for the individual chemical atrazine, the Agency is not deferring or postponing FQPA requirements; rather, EPA is taking steps to assure that uses which exceed FIFRA's unreasonable risk standard do not remain on the label indefinitely, pending completion of assessment required under the FQPA. This decision does not preclude the Agency from making further FQPA determinations or tolerance-related rulemakings that may be required on this pesticide or any other in the future.

What Registrants Need to Do

In order to be eligible for reregistration, registrants need to implement the risk mitigation measures outlined above, which include, among other things, development and submission of the following:

Potential Effects of Atrazine on Amphibian Endocrinology and Development

Phase I:	Response of larval <i>Xenopus laevis</i> to estradiol: assessment of development and gonadal morphology. Response of larval <i>Xenopus laevis</i> to atrazine: assessment of development and gonadal morphology.
Phase II:*	Response of larval <i>Xenopus laevis</i> to atrazine: assessment of gonadal and plasma sex steroid concentrations.
Phase III:*	Response of larval <i>Xenopus laevis</i> to atrazine: assessment of gonadal aromatase activity.
Phase IV:*	Response of larval <i>Xenopus laevis</i> to atrazine and an aromatase inhibitor: assessment of development, gonadal morphology, sex steroid concentrations and aromatase activity.

Phase V:* Response of *Rana pipiens* to atrazine: assessment of reproductive fitness.

* Conducting the studies in phases II through V are conditional on the results from the previous phase indicating an effect. For example, if morphological abnormalities are observed in the gonads of larval *Xenopus laevis* after exposure to atrazine (Phase I) then the Phase II studies on gonadal and plasma sex steroid concentrations would be conducted. However, if the Phase I studies show negative results then the registrant does not need to proceed with the subsequent

study. EPA requests to review all of the protocols before the studies are initiated.

Ecological Monitoring and Mitigation of Atrazine in Watersheds

- Atrazine Monitoring For Potential Ecological Effects on Aquatic Communities: Part 1. Flowing Water Bodies in Corn and Sorghum Use Areas.
- Atrazine Monitoring For Potential Ecological Effects on Aquatic Communities: Part 2. Water Bodies in Sugarcane Use Areas.
- Atrazine Monitoring For Potential Ecological Effects on Aquatic Communities: Part 3. Static Water Bodies.
- Atrazine Monitoring For Potential Ecological Effects on Aquatic Communities: Part 4. Estuarine Water Bodies.

Data Call-In data for the ecological monitoring of watersheds will be sent to Office of Pesticide Programs (OPP) and Office of Water (OW), as well as the State or Tribe where the data are collected. Once the monitoring data has been quality controlled it will be posted in OW's publically available STORET database.

If you have questions on this document, please contact the Chemical Review Manager, Eric R. Olson at (703) 308-8067.

Sincerely,

Betty Shackleford, Acting Director Special Review and Reregistration Division

12 Attachments

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES OFFICE OF PESTICIDE PROGRAMS SPECIAL REVIEW and REREGISTRATION

DIVISION

(7508C)

Debra Edwards, Ph.D., Director

Correction to the Existing Stocks Section in the January 2003 Atrazine IRED

The October 1, 2003 deadline for distribution of product by persons other than the registrant in Existing Stocks provision in Chapter V, Section C of the January 2003 Atrazine IRED is incorrect. The new Existing Stocks policy for products containing atrazine is as follows:

The Agency has determined atrazine products (other than product containing 4% or less atrazine active ingredient) bearing old labels/labeling cannot be sold to end users after January 1, 2005 unless these products have a sticker label attached which refers to supplemental labeling. The supplemental label must also be given out when it is sold to an end user. The products containing 4% or less atrazine active ingredient are not required to follow the January 1, 2005 date for sticker labels or supplemental labels. However, any product with less than 4% active ingredient that is manufactured six months after receiving new EPA approved label must bear the revised labeling. The residential turf products; 829-268, 7401-318, 9404-72, 11715-347, and 51036-363 are also exempt from this January 1, 2005 requirement. However, any of these products that are manufactured after January 1, 2005 must bear the revised labeling.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

MEMORANDUM

- SUBJECT: Errata/Addendum Sheet for Changes to the Atrazine Interim Reregistration Eligibility Decision.
- FROM: Anne Overstreet Special Review Branch Special Review and Reregistration Divsion
- TO: Public Docket for Atrazine

Listed below are changes/clarifications added to the Atrazine Interim Reregistration Eligibility Decision (IRED) which was published in January, 2003. The regulatory decision of the IRED did not change as a result of these clarifications.

1) The occupational and non-occupational mitigation areas were updated to reflect more recent data. Because the Agency recently updated several scenarios using ORTEF data, a respirator is no longer necessary for backpack sprayers.

2) Appendices A-H were added to the IRED. They are as follows:

- Appendix A: Atrazine Use Patterns Eligible for Reregistration
- Appendix B: Studies Used to Support the Reregistration of Atrazine
- Appendix C: Technical Support Documents
- Appendix D: Citations Considered to Be Part of the Database Supporting the Interim Reregistration Decision (Bibliography)
- Appendix E: Generic Data Call-In
- Appendix F: Product Specific Data Call-In
- Appendix G: EPA's Batching of Atrazine Products for Meeting Acute Toxicity Data **Requirements For Reregistration**
- Appendix H: Atrazine Monitored Watersheds

Appendix B was previously posted on the web. It has been subsequently been amended to accurately reflect the data gaps and studies used in support of reregistration.

reregistration, all product labels are to be amended to incorporate the risk mitigation measures outlined in Section IV. Table 29 has been added to the IRED and describes how language on the labels should be amended

4) Clarification was made relating to the atrazine cancer assessment language. The findings of the 2000 SAP meeting were included.

5) Corrections were made pertaining to the baseline attire for occupational scenarios. Baseline clothing typically includes: long-sleeved shirt and long pants, shoes and socks. For scenario 5 (Table 14 of the IRED), application of liquids via groundboom, baseline assessments also included gloves. This clarification was made in both the text and footnotes of Table 14.
6) In Table 15, for scenarios 10&11 (application of liquids via backpack sprayer and low-pressure handwand), the number of acres treated changed from 1 to 5 based on further refinements to input parameters.

7) In Table 15 for the following scenarios:

- -12(a) application of liquid via handgun and compressed air sprayer
- 12(b) WDG via lawn handgun
- 12(c) WSP via lawn handgun
- -13 application of granular via push-type spreader
- 7 application of liquids via handgun

A footnote was added which specified that these scenarios considered baseline attire plus gloves.

8) There has been harmonization between Sections IV and V with the MOA.

9) The Atrazine Water Management Information Center (AWMIC) has been changed to the Atrazine Water Information Center (AWIC). It has been changed in Chapters four and five of the IRED.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES

CERTIFIED MAIL

Dear Registrants:

This is to inform you that the Environmental Protection Agency (hereafter referred to as EPA or the Agency) has completed its review of the available data and public comments received related to the preliminary and revised risk assessments for the pesticide atrazine. The public comment period on the revised risk assessment phase of the reregistration process is closed. Based on comments received during the public comment period and additional data received from the registrants, the Agency revised the human health and environmental effects risk assessments and made them available to the public on May 6, 2002. Additionally, the Agency held a Technical Briefing on April 16, 2002, where the results of the revised human health and environmental effects risk assessments were presented to the general public. This Technical Briefing concluded Phase 4 of the Public Participation Pilot Process developed by the Tolerance Reassessment Advisory Committee (TRAC), and initiated Phase 5 of that process. During Phase 5, all interested parties were invited to participate and provide comments and suggestions on ways the Agency might mitigate the estimated risks presented in the revised risk assessments. This public participation and comment period commenced on May 6, 2002, and closed on July 5, 2002.

Based on its review, EPA has identified risk mitigation measures that the Agency believes are necessary to address the human health and environmental risks associated with the current use of atrazine. The EPA is now publishing its interim decision on the reregistration eligibility of and risk management decision for the current uses of atrazine and associated human health and environmental risks. The reregistration eligibility and tolerance reassessment decisions for atrazine will be finalized once the cumulative assessment for all of the triazine herbicides is complete. The enclosed "Interim Reregistration Eligibility Decision for Atrazine" was approved on January 31, 2003, and contains the Agency's decision on the individual chemical atrazine.

The Agency is aware that several pertinent studies are being performed at this time by

researchers that may reduce some of the uncertainties in understanding potential atrazine effects on amphibian endocrinology and reproductive and developmental responses. The Agency has committed to provide these studies along with other available studies, a summary of the available data and methodologies and various data analyses for an external scientific review by the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) Science Advisory Panel (SAP) at a public meeting which is scheduled for June, 2003. The Agency anticipates that the results from this SAP meeting will provide significant input to enable it publish an amendment to this IRED in October 2003 which will address the issue of the potential effects of atrazine on amphibian endocrinology and development.

A Notice of Availability for this Interim Reregistration Eligibility Decision (interim RED) is being published in the *Federal Register*. To obtain a copy of the interim RED document, please contact the OPP Public Regulatory Docket (7502C), US EPA, Ariel Rios Building, 1200 Pennsylvania Avenue NW, Washington, DC 20460, telephone (703) 305-5805. Electronic copies of the interim RED and all supporting documents are available on the Internet. See http://www.epa.gov/pesticides.

The interim RED is based on the updated technical information found in the atrazine public docket. The docket includes background information and comments on the Agency's preliminary risk assessments, the Agency's April 2002 revised risk assessments for atrazine, and a document summarizing the Agency's Response to Comments. The Response to Comments document addresses corrections to the preliminary risk assessments submitted by chemical registrants and responds to comments submitted by the general public and stakeholders during the comment period on the risk assessment. The docket also includes comments on the revised risk assessment, and any risk mitigation proposals submitted during Phase 5. For atrazine, a proposal was submitted by Syngenta Crop Protection, Inc. (Syngenta), a technical registrant. Comments on mitigation or mitigation suggestions were submitted by growers, agricultural extension agents, environmental organizations, university scientists, and various other organizations.

This document and the process used to develop it are the result of a pilot process to facilitate greater public involvement and participation in the reregistration and/or tolerance reassessment decisions for pesticides. As part of the Agency's effort to involve the public in the implementation of the Food Quality Protection Act of 1996 (FQPA), the Agency is undertaking a special effort to maintain open public dockets on pesticides and to engage the public in the reregistration and tolerance reassessment processes for these chemicals. This open process follows the guidance developed by TRAC, a large multi-stakeholder advisory body that advised the Agency on implementing the new provisions of the FQPA. The reregistration and tolerance reassessment reviews for atrazine are following this new process.

Please note that the atrazine risk assessment and the attached interim RED concern only this particular triazine. This interim RED presents the Agency's conclusions on the dietary and

residential risks posed by exposure to atrazine alone. The Agency has also concluded its assessment of the ecological risk, with the exception of the potential atrazine effects on amphibian endocrinology and reproductive and developmental responses, and worker risks associated with the use of atrazine. Because the FQPA directs the Agency to consider available information on cumulative risk from substances sharing a common mechanism of toxicity, such as the toxicity expressed by the triazine herbicides through a common biochemical mechanism, the Agency will evaluate the cumulative risk posed by the entire triazine class of chemicals after considering the risks for the individual triazines. The Agency is working towards completion of a methodology to assess cumulative risk and the individual risk assessments for each triazine are likely to be necessary elements of any cumulative assessment. The Agency has decided to move forward with individual assessments and to identify mitigation measures necessary to address those human health and environmental risks associated with the current uses of atrazine. The Agency will issue the final tolerance reassessment decision for atrazine and finalize decisions on reregistration eligibility once the cumulative risks for all of the triazines are considered.

This document contains a generic and/or a product-specific Data Call-In(s) (DCI) that outline(s) further data requirements for this chemical. Note that a complete DCI, with all pertinent instructions, is being sent to registrants under a separate cover. Additionally, for product-specific DCIs, the first set of required responses is due 90 days from the receipt of the DCI letter. The second set of required responses is due eight months from the date of the DCI.

The Agency has determined that atrazine is eligible for reregistration provided that all the conditions identified in this document are satisfied, including implementation of the interim risk mitigation measures outlined in Section IV of the document. This determination does not include consideration of the cumulative risk from the use of the triazines. The Agency believes that certain current uses of atrazine pose unreasonable adverse effects to human health and the environment, and that such effects can be mitigated with the risk mitigation measures identified in this interim RED. Accordingly, the Agency recommends that registrants implement these interim risk mitigation measures immediately. Section V of this interim RED describes labeling amendments for end-use products and data requirements necessary to implement these interim mitigation measures. Instructions for registrants on submitting revised labeling and the time frame established to do so can be found in Section VI of this document.

Should a registrant fail to implement any of the risk mitigation measures outlined in this document, the Agency will undertake appropriate action to address concerns about the risks posed by atrazine. Where the Agency has identified any unreasonable adverse effect to human health or the environment, the Agency must take action to address this concern. At that time, any affected person(s) may challenge the Agency's action.

If you have questions on this document or the label changes necessary for reregistration, please contact the Chemical Review Manager, Kimberly Nesci at (703) 308-8059. For questions about product reregistration and/or the Product DCI that accompanies this document, please contact Bonnie Adler at (703) 308-8523.

Sincerely,

Lois A. Rossi, Director Special Review and Reregistration Division

Attachment

Interim Reregistration Eligibility Decision for Atrazine

Case No. 0062

TABLE OF CONTENTS

Atra	zine T	Feam	· · · · · · · · · · · · · · · · · · ·
Glos	sary o	of Terms and Abb	previations vii
Exec	utive	Summary	1
I.	Intro	oduction	
II.	Che	mical Overview	
	А.	Regulatory His	tory
	B.	Chemical Ident	ification
	C.	Use Profile	
	D.	Estimated Usag	ge of Pesticide
III.		•	e Risk Assessments
	A.		Risk Assessment
		1. Dietary R	isk From Food
		a.	Toxicity and Carcinogenicity 16
			1) Atrazine and the Chlorinated Metabolites 16
		-	2) Hydroxyatrazine
		b.	FQPA Safety Factor
			1) Atrazine and the Chlorinated Metabolites 17
			2) Hydroxyatrazine
		с.	Population Adjusted Dose
		d.	Exposure Assumptions
		e.	Food Risk Characterization
			1) Atrazine and Its Chlorinated Metabolites 21
		2 D'. 4 D	2) Hydroxyatrazine
		•	isk from Drinking Water
		а.	Drinking Water Levels of Comparison (DWLOC) 22 1) Community Water Systems (CWS) Using Surface
			Water 23 2) Groundwater 25
			3) Domestic Rural Wells
		2. Residentia	-,
		2. Residentia a.	Toxicity
		а. b.	Exposure Assumptions
		с.	Residential Applicator Risk
		e. d.	Post-Application Residential Risk
			e Risk
		a.	Acute Aggregate Exposure and Risk Estimates
		а. b.	Intermediate-Term and Chronic Aggregate Exposure and
		~*	in the second region in the region of the

		Risk Estimates	33
		c. Short-Term Aggregate Exposure and Risk Estimates .	33
		1) Adult Handlers	33
		2) Adult Post-Application	34
		3) Child Post-Application	
	4.	Occupational Risk	
		a. Toxicity	36
		b. Occupational Exposure	
		c. Occupational Handler Risk Summary	
		1) Agricultural Handler Risk	
		2) Lawn Care Operator Handler Risk	
		3) Post-Application Occupational Risk	
		4) Epidemiology Data	
	B. Env	vironmental Risk Assessment	
	1.	Environmental Fate and Transport	
	2.	Risk to Terrestrial Organisms	
		a. Toxicity (Hazard) Assessment	
		b. Exposure and Risk - Birds and Mammals	
		c. Exposure and Risk - Terrestrial Plants	
	3.	Risk to Aquatic Species	
		a. Toxicity (Hazard) Assessment	
		b. Exposure and Risk	
	5.	Refined Aquatic Assessment	
		a. Ponds	
		b. Lakes and Reservoirs	
		c. Streams	
		d. Estuaries	
	6.	Risk to Endangered Species	
	7.	Ecological Incident Reports	
	8.	Endocrine Disruption	
	0.		
IV.	Interim I	Risk Management and Reregistration Decision	75
		termination of Interim Reregistration Eligibility	
		mmary of Phase 5 Comments and Responses	
		gulatory Position	
	1.	FQPA Assessment	
		a. "Risk Cup" Determination	
		b. Tolerance Summary	
	3.	Codex Harmonization	
	3. 4.	Endocrine Disruptor Effects	
		Labels	
	5.	a. Agricultural Use Exposure Reduction Measures	
		1) Mixing/Loading Scenarios:	
		1) IVITATILY/L'Oauning Stenarios;	00
		ii	
		**	

			2)	Applicator and Flagger Scenarios:
		ł	0	ricultural Use Exposure Reduction Measures87
			1)	Non-Agricultural Products including Lawns and
				Turf (not Sod Farms)
			2)	Residential
		-		armonization
	D.	•		
		1. Huma	Mitigation	
		8	a. Dietary ((Food)
		ł	o. Dietary ((Drinking Water)
			1)	Community Water Systems (CWS) 89
			2)	Rural Drinking Water Wells92
		ł	o. Resident	ial Risk Mitigation93
			1)	Residential Handler Risk
			2)	Residential Post-Application Risk
		C	e. Aggrega	te Risk Mitigation
			1)	Acute Exposure
			2)	Intermediate-Term and Chronic Exposure94
			3)	Short-Term Aggregate Exposure
		Ċ	d. Occupat	ional Risk Mitigation95
			1)	Mixing/Loading Scenarios
			2)	Applicator and Flagger Scenarios
		3. Non-A	Agricultural P	roducts including Lawns and Turf (not Sod Farms) 97
		2. Enviro	onmental Risk	Mitigation
		3. Other	Labeling	
		8	a. Endang	ered Species Statement
		ł	o. Spray D	rift Management
X 7	XX /1-	- 4 D ! - 4 4 -	Need to De	101
V.		0		
	А.		U	icts
				Data Requirements
	р		-	acturing Use Products
	В.			
				Specific Data Requirements
	C		0	se Products
	C.			
	D.	Labeling Ch	langes Summa	ry Table

Appendix A:	ATRAZINE USE PATTERNS ELIGIBLE FOR
	REREGISTRATION

Appendix B:	STUDIES USED TO SUPPORT THE REREGISTRATION OF ATRAZINE	
Appendix C:	TECHNICAL SUPPORT DOCUMENTS	169
Appendix D:	CITATIONS CONSIDERED TO BE PART OF THE DATA BA SUPPORTING THE INTERIM REREGISTRATION DECISIO (BIBLIOGRAPHY)	N
Appendix F:	PRODUCT SPECIFIC DATA CALL-IN	
Appendix G:	EPA'S BATCHING OF ATRAZINE PRODUCTS FOR MEET ACUTE TOXICITY DATA REQUIREMENTS FOR REREGISTRATION	
Appendix H:	ATRAZINE MONITORED WATERSHEDS	287

Atrazine Team

Office of Pesticide Programs:

Health Effects Risk Assessment

Gary Bangs Vicki Dellarco Catherine Eiden Artensie Flowers Linda Taylor

Environmental Fate Risk Assessment

Tim Bargar Kevin Costello Mary Frankenberry James Lin William Rabert Thomas Steeger Douglas Urban

Use and Usage Analysis

Neil Anderson Nicole Mosz Steve Smearman Philip Villanueva Virginia Werling

Registration Support

Philip Errico Edith Minor Jim Tompkins

Risk Management

Mark Hartman Kimberly Nesci

US EPA ARCHIVE DOCUMENT

Glossary of Terms and Abbreviations

AE	Acid Equivalent
a.i.	Active Ingredient
AGDCI	Agricultural Data Call-In
ai	Active Ingredient
aPAD	Acute Population Adjusted Dose
AR	Anticipated Residue
ARC	Anticipated Residue Contribution
BCF	Bioconcentration Factor
CAS	Chemical Abstracts Service
CI	Cation
CNS	Central Nervous System
cPAD	Chronic Population Adjusted Dose
CSF	Confidential Statement of Formula
CFR	Code of Federal Regulations
CSFII	USDA Continuing Surveys for Food Intake by Individuals
DCI	Data Call-In
DEEM	Dietary Exposure Evaluation Model
DFR	Dislodgeable Foliar Residue
DRES	Dietary Risk Evaluation System
DWEL	Drinking Water Equivalent Level (DWEL) The DWEL represents a medium
	specific (i.e., drinking water) lifetime exposure at which adverse, noncarcinogenic
	health effects are not anticipated to occur.
DWLOC	Drinking Water Level of Comparison.
EC	Emulsifiable Concentrate Formulation
EEC	Estimated Environmental Concentration. The estimated pesticide concentration
	in an environment, such as a terrestrial ecosystem.
EP	End-Use Product
EPA	U.S. Environmental Protection Agency
FAO	Food and Agriculture Organization
FDA	Food and Drug Administration
FIFRA	Federal Insecticide, Fungicide, and Rodenticide Act
FFDCA	Federal Food, Drug, and Cosmetic Act
FQPA	Food Quality Protection Act
FOB	Functional Observation Battery
G	Granular Formulation
GENEEC	Tier I Surface Water Computer Model
GLC	Gas Liquid Chromatography
GLN	Guideline Number
GM	Geometric Mean
GRAS	Generally Recognized as Safe as Designated by FDA
HA	Health Advisory (HA). The HA values are used as informal guidance to
	municipalities and other organizations when emergency spills or contamination
------------------	--
	situations occur.
HAFT	Highest Average Field Trial
HDT	Highest Dose Tested
IR	Index Reservoir
LC ₅₀	Median Lethal Concentration. A statistically derived concentration of a substance that can be expected to cause death in 50% of test animals. It is usually expressed as the weight of substance per weight or volume of water, air or feed, e.g., mg/l, mg/kg or ppm.
LD ₅₀	Median Lethal Dose. A statistically derived single dose that can be expected to cause death in 50% of the test animals when administered by the route indicated (oral, dermal, inhalation). It is expressed as a weight of substance per unit weight of animal, e.g., mg/kg.
LEL	Lowest Effect Level
LOC	Level of Concern
LOD	Limit of Detection
LOAEL	Lowest Observed Adverse Effect Level
MATC	Maximum Acceptable Toxicant Concentration
MCLG	Maximum Contaminant Level Goal. The MCLG is used by the Agency to
	regulate contaminants in drinking water under the Safe Drinking Water Act.
mg/kg/day	Milligram Per Kilogram Per Day
mg/L	Milligrams Per Liter
MOE	Margin of Exposure
MP	Manufacturing-Use Product
MPI	Maximum Permissible Intake
MRID	Master Record Identification (number). EPA's system of recording and tracking studies submitted.
NA	Not Applicable
N/A	Not Applicable
NAWQA	USGS National Water Quality Assessment
NOEC	No Observable Effect Concentration
NOEL	No Observed Effect Level
NOAEL	No Observed Adverse Effect Level
NPDES	National Pollutant Discharge Elimination System
NR	Not Required
OP	Organophosphate
OPP	EPA Office of Pesticide Programs
OPPTS	EPA Office of Prevention, Pesticides and Toxic Substances
Pa	Pascal, the pressure exerted by a force of one newton acting on an area of one square meter.
PAD	Population Adjusted Dose
PADI	Provisional Acceptable Daily Intake
PAG	Pesticide Assessment Guideline
PAM	Pesticide Analytical Method

PCA	Percent Crop Area
PCO	Pest Control Operator
PDP	USDA Pesticide Data Program
PHED	Pesticide Handler's Exposure Data
PHI	Preharvest Interval
ppb	Parts Per Billion
PPE	Personal Protective Equipment
ppm	Parts Per Million
PRN	Pesticide Registration Notice
PRZM/	
EXAMS	Tier II Surface Water Computer Model
Q_1^*	The Carcinogenic Potential of a Compound, Quantified by the EPA's Cancer Risk
	Model
RAC	Raw Agriculture Commodity
RBC	Red Blood Cell
RED	Reregistration Eligibility Decision
REI	Restricted Entry Interval
RfD	Reference Dose
RQ	Risk Quotient
RS	Registration Standard
RUP	Restricted Use Pesticide
SAP	Science Advisory Panel
SCI-GROW	Tier I Ground Water Computer Model
SF	Safety Factor
SLC	Single Layer Clothing
SLN	Special Local Need (Registrations Under Section 24(c) of FIFRA)
TC	Toxic Concentration. The concentration at which a substance produces a toxic
	effect.
TD	Toxic Dose. The dose at which a substance produces a toxic effect.
TEP	Typical End-Use Product
TGAI	Technical Grade Active Ingredient
TLC	Thin Layer Chromatography
TMRC	Theoretical Maximum Residue Contribution
torr	A unit of pressure needed to support a column of mercury 1 mm high under
	standard conditions.
TRR	Total Radioactive Residue
UF	Uncertainty Factor
μg/g	Micrograms Per Gram
$\mu g/L$	Micrograms Per Liter
USDA	United States Department of Agriculture
USGS	United States Geological Survey
UV	Ultraviolet
WHO	World Health Organization
WP	Wettable Powder

WPS Worker Protection Standard

Executive Summary

EPA has completed its review of public comments concerning the revised atrazine risk assessments and is issuing its interim risk management decision for atrazine. The revised risk assessments are based on the Agency's review of available data on the currently registered uses of atrazine and public comments received during the reregistration process. The Agency invited stakeholders to provide proposals, ideas or suggestions on appropriate mitigation measures before the Agency issued its risk mitigation decision for atrazine. After considering the risks identified, public comments, and mitigation options proposed by several entities, the Agency developed its interim risk management decision for atrazine. This decision is discussed fully in this document and in a January 31, 2003, Memorandum of Agreement between the Agency and the primary technical registrant, Syngenta Crop Protection, Inc. The Agency expects the atrazine technical registrants to agree to adopt the risk management measures presented in the IRED and in the MOA. Neither the risk assessments nor the interim risk management measures include consideration of cumulative risks posed by all of the triazines and amphibian risk issues.

Atrazine is a triazine herbicide currently registered for use against broadleaf and some grassy weeds. Atrazine is currently registered for use on corn (field and sweet); guavas; macadamia nuts; sorghum; sugarcane; range grasses for the establishment of permanent grass cover on rangelands and pastures under USDA's Conservation Reserve Program (CRP) in OK, NE, TX, and OR; wheat (where application is to wheat stubble on fallow land following wheat harvests; wheat is not the target crop); conifer forests; Christmas tree farms; sod farms; golf courses and residential lawns (Southern turfgrasses). Given the specific nature of the lawn uses, much of atrazine's use on lawns is confined to Florida and the Southeast. Atrazine degrades into hydroxy compounds and chlorotriazine degradates. Atrazine was first registered in 1958 as an herbicide. Use data from 1990 to 1997 indicate that approximately 76.5 million pounds of atrazine active ingredient are used domestically each year.

The Food Quality Protection Act of 1996 (FQPA) requires that, when considering whether to establish, modify, or revoke a tolerance, the Agency consider "available information" concerning the cumulative effects of a particular pesticide's residues and other substances that have a common mechanism of toxicity with other pesticides. The Agency has classified the triazine herbicides (atrazine, simazine, and propazine) and their common chlorinated degradates as having a common mechanism of toxicity. The Agency has not yet completed its cumulative risk assessment for the triazine class, but the cumulative risks of these chemicals will be considered in the future. At that time, the Agency's final tolerance reassessment decision for atrazine and the other triazines will be issued. The Agency may need to pursue further risk mitigation for atrazine to address any risks identified in the cumulative assessment for the triazines.

Overall Risk Summary

The Agency's human health risk and ecological risk assessments for atrazine indicate risks of concern. Intermediate-term (seasonal) dietary risk from drinking water exceeds the Agency's level of concern (>100% cPAD) at the 99.9th exposure percentile for infants, children 1-6 years of age, and adults in 34 community water systems (CWS) primarily in the Midwest. Acute dietary drinking water risks, and acute and chronic dietary food risks (alone) are below the Agency's level of concern for the U.S. population and all population subgroups.

Further, there are some concerns for workers who mix, load and apply atrazine to agricultural and turf sites and for homeowners who apply atrazine products to home lawns. In addition, there are risks of concern for adults and children exposed to atrazine treated lawns after applications.

For ecological effects, the Agency has conducted a screening level assessment for terrestrial impacts and a refined exposure assessment for aquatic impacts of atrazine use. These assessments indicate that atrazine is likely to result in community- and population-level risk at 10 to 20 ppb. The ecological assessment does not address the potential for effects on amphibians endocrinology and reproductive and developmental responses. The Agency will consider amphibian risk after the Agency obtains further data and will address any risks identified in a revision to the IRED to be published by October 31, 2003.

To mitigate risks of concern posed by the uses of atrazine, the Agency considered the mitigation proposal submitted by the technical registrants, as well as comments and mitigation ideas from other interested parties, and has decided on a number of label amendments to address the dietary (drinking water), worker, and residential concerns. In addition, to further address drinking water concerns and to address ecological concerns, the Agency and the technical registrants have agreed to a performance standard for atrazine that must be met in community water systems, prohibition of use in watersheds if the standard is not met, and monitoring data requirements as described in the Memorandum of Agreement. Results of the risk assessments, the necessary label amendments to mitigate those risks, and information on the Agreement between the Agency and the technical registrants are presented in this IRED.

Dietary Risk (Food)

Acute risk estimates for food and drinking water and chronic food risk estimates do not exceed the Agency's level of concern; therefore, mitigation measures are not needed to address acute dietary risks or chronic food risk estimates.

Dietary Risk (Drinking Water)

Intermediate-term (seasonal) drinking water risk estimates do exceed the Agency's level of concern in 34 CWS primarily in the Midwest. The registrant has added three CWS to these 34 to make a total of 37 CWS that are of concern. To mitigate these risks, the Agency has determined that a performance standard that must be met in these CWS and prohibiting use in the watershed if the performance standard is not met is necessary to avoid unreasonable adverse

effects. In addition, the Agency is requiring extensive monitoring data on these CWS and other CWS that are in atrazine use areas.

To confirm that risks from atrazine in rural wells is not a concern, the Agency is requiring monitoring data for atrazine levels in rural wells in atrazine use areas.

Residential Risk

Residential and turf use results in risks of concern for children reentering treated atrazine turf and for homeowners applying product to turf using a bellygrinder.

Restrict the application of granular lawn products when using hand-held devices (e.g. belly grinder) to spot applications only.

- Prohibit applications of granular lawn products by hand
- Reduce the maximum single application rate for liquid formulations on residential lawns and turf to 1 lb ai/A from 2 lb ai/A (liquid products containing >4% ai are restricted use)
- Require that granular lawn products be watered in

Occupational Risk

Occupational exposure to atrazine is of concern to the Agency. For agricultural and turf lawn care operator uses of atrazine, several mixer/loader/applicator risk scenarios currently exceed the Agency's level of concern at baseline PPE or label PPE. The Agency has determined that a number of measures are needed to mitigate these risks, as follows:

Agricultural Uses

1) Mixing/Loading Scenarios:

Liquids:

- require closed systems for mixing/loading to support aerial applications at greater than 3 lb ai/A
- all mixers/loaders (including using engineering controls) must wear longsleeve shirt, long pants, shoes, socks, chemical-resistant gloves and chemical resistant apron

Wettable Powders:

- require water-soluble packaging for all WP formulations
- all mixers/loaders must wear long-sleeve shirt, long pants, shoes, socks, chemical-resistant gloves and chemical resistant apron

Dry Flowables:

- water-soluble packaging optional
- if in water-soluble packaging, all mixers/loaders must wear long-sleeve shirt, long pants, shoes, socks, chemical-resistant gloves and chemical resistant apron
- if not in water-soluble packaging, mixers/loaders must wear coveralls over

long-sleeve shirt and long pants, chemical-resistant gloves, chemical-resistant footwear, and chemical-resistant apron plus a NIOSH-approved dust/mist filtering respirator with any N, R, P, or HE filter.

- if not in water-soluble packaging, aerial application is prohibited. Granular Products:
- Loaders must wear long-sleeve shirt, long pants, shoes, and socks.

2) Applicator and Flagger Scenarios:

- Pilots must use enclosed cockpits (40 CFR 170.240(d)(6)) for aerial applications.
- Human flaggers supporting aerial applications must used enclosed cabs (40 CFR 170.240(d)(5)).
- Applicators applying sprays with motorized ground equipment (i.e., groundboom or rights-of-way sprayers) must wear long-sleeve shirt, long pants, shoes, socks, and chemical-resistant gloves.
- Applicators applying granular products or impregnated fertilizer must wear longsleeve shirt, long pants, shoes, and socks.
- Restrict the impregnation of bulk fertilizer to commercial facilities (prohibit onfarm impregnation)
- Restrict the impregnation of dry bulk fertilizer to 500 tons per day for no more than 30 days per calender year per facility
- Reduce the maximum application rate for handlers applying liquids with rightsof-way sprayers to 1.0 lb ai/A
- Reduce the maximum application rate for liquids for chemical follow to 2.25 lb ai/A
- Require a 60-day PHI for field corn forage uses
- Require a 45-day PHI for sweet corn forage uses
- Require a 60-day PHI for preemergent uses and a 45-day PHI for postemergent sorghum forage uses

Non-Agricultural Products including Lawns and Turf (not Sod Farms)

- Require that all wettable powder products be packaged in water soluble bags.
- Granular formulations: loaders, applicators, and other handlers must wear longsleeve shirt, long pants, shoes, and socks.
- Liquid, wettable powder, dry flowable (water-dispersible granule) formulations:
 - applicators using spray equipment mounted on their backs must wear coveralls worn over long sleeved shirt and long pants, chemical-resistant gloves and chemical-resistant footwear plus socks.
 - all other mixers, loaders, applicators, and other handlers must wear long-sleeved shirt and long pants, shoes and socks, and chemical resistant gloves.
- Reduce the maximum single application rate for liquid formulations on residential lawns and turf to 1 lb ai/A from 2 lb ai/A (liquid products containing >4% ai are restricted use)
- Require that granular lawn products be watered in

The Agency does not have risks of concern for workers reentering treated fields; therefore, no mitigation is needed.

Ecological Risk

Ecological risks are also of concern to the Agency. The environmental risk assessment suggests that exposure to atrazine could result in community-level and population-level effects in aquatic communities at concentrations of 10-20 ppb atrazine.

To address these risks, the Agency has determined that an ecological assessment process to identify waterbodies at risk and monitor these waterbodies for atrazine concentrations. In addition, it may be necessary to undertake mitigation in these vulnerable ecosystems. The specifics of this ecological program will be negotiated with the technical registrants and agreed to by April 30, 2003.

The ecological assessment does not address the potential for effects on amphibian endocrinology and reproductive and developmental responses. The Agency will consider amphibian risk after the Agency obtains further data on this issue. Any risks identified will be addressed by the Agency in a revision to the IRED to be published by October 31, 2003.

Conclusions

The Agency is issuing this interim Reregistration Eligibility Decision (IRED) for atrazine, as announced in a Notice of Availability published in the Federal Register. This IRED includes guidance and time frames for implementing label changes for products containing atrazine. Note that the Agency has shortened the time period for implementation of risk mitigation measures outlined in this document and to establish monitoring programs so that the risks identified herein are addressed as quickly as possible. There is a 60-day comment period on this document. With the mitigation measures detailed in this document, the Agency has determined that, until the cumulative risks from all the triazines has been considered, most of the currently registered uses of atrazine may continue. Neither the tolerance reassessment nor the reregistration eligibility decision for atrazine can be considered final until the cumulative risk for all triazines is considered.

US EPA ARCHIVE DOCUMENT

I. Introduction

The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) was amended in 1988 to accelerate the reregistration of products containing active ingredients originally registered prior to November 1, 1984. The amended Act calls for the development and submission of data to support the reregistration of an active ingredient, as well as a review of all submitted data by the U.S. Environmental Protection Agency (EPA or "the Agency"). Reregistration involves a thorough review of the scientific database supporting a pesticide's registration. The purpose of the Agency's review is to reassess the potential hazards and benefits arising from the currently registered uses of the pesticide; to determine if there is a need for additional data on benefits, health and environmental effects; and to determine whether the pesticide meets the "no unreasonable adverse effects" criteria of FIFRA.

On August 3, 1996, the Food Quality Protection Act of 1996 (FQPA) was signed into law. This Act amends the Federal Food, Drug and Cosmetics Act (FFDCA) to require reassessment of all existing tolerances. The Agency had decided that, for those chemicals that have tolerances and are undergoing reregistration, the tolerance reassessment will be initiated through this reregistration process. It also requires that by 2006, EPA must review all tolerances in effect as of August 2, 1996 (the day before FQPA was enacted). FQPA also amends the FFDCA to require a safety finding in tolerance reassessment based on several factors, including an assessment of cumulative effects of chemicals with a common mechanism of toxicity. Atrazine belongs to a group of systemic herbicides called triazines that share a common mechanism of toxicity. Agency is continuing its reregistration program while it resolves the remaining issues associated with the implementation of FQPA.

This document presents the Agency's revised human health and ecological risk assessments; its progress toward tolerance reassessment; and the interim decision on the reregistration eligibility of atrazine. It is intended to be only the first phase in the reregistration process for atrazine. The Agency will eventually proceed with its assessment of the cumulative risk of the triazine pesticides and issue a final reregistration eligibility decision for atrazine.

The implementation of FQPA has required the Agency to revisit some of its existing views relating to the determination and regulation of dietary risk, and has also raised a number of new issues that need to be addressed. These issues were refined and developed through collaboration between the Agency and the Tolerance Reassessment Advisory Committee (TRAC), a committee that was composed of representatives from industry, environmental groups, and other interested parties.

This interim Reregistration Eligibility Decision document consists of six sections. Section I contains the regulatory framework for reregistration/tolerance reassessment. Section II provides a profile of the use and usage of the chemical. Section III gives an overview of the revised human health and environmental effects risk assessments resulting from public comments and other information. Section IV presents the Agency's interim decision on reregistration eligibility and risk management decisions. Section V summarizes the label changes necessary to implement the risk mitigation measures outlined in Section IV. Section VI provides information on how to access related documents. Finally, the Appendices list Data Call-In (DCI) information. The revised risk assessments and related addenda are not included in this document, but are available on the Agency's web page:

"www.epa.gov/pesticides/reregistration," and in the Public Docket.

II. Chemical Overview

A. Regulatory History

Atrazine was first registered in 1958 as an herbicide. On November 10, 1983, a Registration Standard for atrazine was issued. This document noted the Agency's concern about the dietary carcinogenic risk from ground and surface water contamination. The Registration Standard also required the submission of generic and product-specific data to support the continued registration of atrazine products. Since the Registration Standard was issued in 1983, there have been a total of 4 DCIs issued (September 1990, September 1992, March 1995, October 1995).

In 1988, EPA issued a preliminary notification of the Agency's intention to initiate Special Review under FIFRA based on concerns regarding the carcinogenic potential of atrazine and possible risks resulting from exposure to atrazine in the diet from treated food and drinking water.

In the early 1990s, atrazine's occurrence in the environment prompted the Environmental Protection Agency's Office of Water (OW) to regulate atrazine under the Safe Drinking Water Act (SDWA). In 1991 OW established a Maximum Contaminant Level (MCL) of 3 parts per billion (ppb) for atrazine. Under the SDWA, atrazine has been subject to compliance monitoring. OW has also established a one-day Health Advisory Level (HAL) for atrazine of 100 ppb.

In the early 1990s, the registrant voluntarily instituted several risk reduction measures to address concerns raised about surface water and groundwater contamination by atrazine. In 1990, the following measures were undertaken by the registrant to address groundwater exposure concerns:

- Reduction of the application rate for corn and sorghum to 3.0 lbs ai/acre from 4.0 lbs ai/acre.
- Reduction of the maximum rate for non-cropland and total vegetation control to 10 lbs ai/acre from 40 lbs ai/acre.
- Require that postemergence applications to corn and sorghum be made before they reach 12 inches in height.
- Deletion of rangeland, proso millet, and pineapple uses.
- Prohibition of chemigation (applying atrazine through irrigation systems).
- Institution of a well-head protection plan requiring 50 foot setbacks around all wells for mixing, loading, or applying atrazine-containing products.
- Institution of construction requirements for bulk storage facilities to prevent point source contamination from spills
- Classification of all atrazine-containing products (except for the lawn care, turf, and conifer uses) as Restricted Use Pesticides (RUPs).

In 1992, the following additional measures were undertaken to address concerns about atrazine contamination of surface water sources:

- Further reduction of the total seasonal application rates for corn and sorghum to 2.5 lbs ai/acre per year. This rate includes a 1.5 lbs ai/acre per year pre-emergence use and a 1.0 lbs ai/acre per year post-emergence use.
- Deletion of all uses for total vegetation control in non-cropland.
- Expansion of restricted use criteria to include surface water concerns.
- Expansion of the setback requirements, including: a 50 foot setback around surface water sources when workers are mixing and loading atrazine-containing products; a 66 foot application (ground and aerial) setback from points of entry where field surface water runoff enters surface water sources; and, a 200 foot application setback around lakes and reservoirs.

In November 1994, EPA initiated a Special Review for the triazine pesticides (atrazine, simazine and cyanazine; 59 FR 60412) based on cancer risk concerns for people potentially exposed to atrazine through consumption of food and drinking water, and lawn treatments. The basis for the Special Review also included cancer risk concerns for workers exposed to atrazine in various agricultural settings and application scenarios. At the time that the Special Review was initiated, atrazine and the other triazines were classified as Group C carcinogens (possible human carcinogens).

Further labeled use restrictions in 1996 reduced environmental exposure from tileterraced fields containing standpipes, as follows:

- Restrictions against application within 66 feet of standpipes.
- A requirement that applications be incorporated to a depth of 2 to 3 inches.
- Restrictions against application to no-till fields unless practicing high crop residue management.

In August 2002, the Agency and NRDC jointly agreed to request that the court extend the deadline for the IRED to January 31, 2003 (Consent Decree (as amended) entered in <u>Natural</u> <u>Resources Defense Council v. Whitman</u>, Case Number C -99-3701 CAL, N. D. California (2002)). The new schedule includes the completion of an IRED by January 31, 2003 (this document), and a revised IRED by October 31, 2003, to consider a number of additional new studies on potential amphibian risk. The Agency also agreed to bring to the FIFRA Scientific Advisory Panel issues regarding amphibian effects and carcinogenicity.

- **B.** Chemical Identification
- Chemical Structure:

•	Common name:	Atrazine
•	Chemical name:	6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4- diamine
•	Chemical family:	Triazines
•	Case number:	0062
•	CAS registry number:	1912-24-9
•	OPP chemical code:	080803
•	Empirical formula:	$C_8H_{14}ClN_5$
•	Molecular weight:	215.7
•	Vapor Pressure:	40 <i>u</i> Pa at 20 °C
•	Technical registrants:	Agan Chemical Manufacturing, LTD. Dow AgroSciences Drexel Chemical Company Oxon Italia S.P.A. Platte Chemical Company Inc. Syngenta Crop Protection Inc.

Atrazine is a white crystalline solid with a melting point of $172-175^{\circ}$ C, density of 0.35 g/mL, octanol/water partition coefficient (log P_{ow}) of 2.7645, and vapor pressure of 40 µPa at 20° C. Atrazine is moderately soluble in water (33 ppm at 25° C), and is soluble in octanol (0.82 g/100 mL), ether (0.86 g/100 mL), methanol (1.4 g/100 mL), ethyl acetate (2.5 g/100 mL), and chloroform (7.8 g/100 mL) at 20° C. Atrazine has four hydroxyatrazine compounds and three chlorinated atrazine compounds as metabolites. The three chlorinated metabolites are desethylated atrazine, desisopropyl atrazine, and diaminochlorotriazine (DACT).

C. Use Profile

Atrazine is a systemic triazine herbicide registered for the control of broadleaf weeds and some grassy weeds. Currently, atrazine is one of the two most widely used agricultural pesticides in the United States. An estimated average of approximately 64 to 76 million pounds of active ingredient are applied per year. Annually, 75% of all field corn, 58.5% of all sorghum, and 76% of all sugarcane grown are treated with atrazine. Most of atrazine applied to corn and sorghum is applied pre-emergence. The following information is based on the currently registered uses of atrazine that were originally being supported for reregistration. Appendix A at the end of this document presents a summary of eligible uses and revised use conditions.

Type of Pesticide: Triazine Herbicide

Summary of Use Sites:

<u>Food</u>: Atrazine is used on corn (field and sweet), guavas, macadamia nuts, sorghum, sugarcane, range grasses under USDA's Conservation Reserve Program (CRP), and wheat (where application is to wheat stubble on fallow land following wheat harvests; wheat is not the target crop)

<u>Other Agricultural Sites</u>: Atrazine is also used in conifer forests, on Christmas tree farms and on sod farms.

<u>Residential</u>: Atrazine is used on golf courses and residential lawns. Given the specific nature of the lawn uses, much of atrazine's use on lawns is confined to Florida and the Southeast.

<u>Other Sites:</u> Atrazine in used on range grasses for the establishment of permanent grass cover on rangelands and pastures under the Conservation Reserve Program (CRP) in four states: OK, NE, TX, and OR.

Public Health: None

Target Pests:Broadleaf and some grassy weeds.

Formulation Types Registered:

Formulated as a flowable concentrate, a water dispersable granular (dry flowable), a ready-to-use product, and a granular.

Method and Rates of Application:

<u>Equipment</u>: Atrazine may be applied by groundboom sprayer, aircraft, tractor-drawn spreader, rights-of-way sprayer, low pressure handwand, backpack sprayer, lawn handgun, push-type spreader, and bellygrinder.

<u>Rates</u>: Maximum application rates range from 0.4 lb ai/A or lb ai/gal to 4.0 lb ai/A or lb ai/gal (conifer forests, sugarcane, Christmas tree farms, sod farms (FL), Bermuda grass highway rights-of-way). The number of maximum allowable applications ranges between 1 and 4 per season or year, when specified.

Timing:

<u>Sugarcane</u>: Applications to sugarcane are usually at planting (fall), in the spring after emergence, and an additional post-emergence application (often at layby (canopy closure)). However, these later applications are only used if pest pressure dictates need. Also, ratoon crops may face heavier weed pressure, and therefore additional applications are more likely during ratoon crops.

<u>Corn</u>: Applications to corn are most often pre-emergence (mid-April through mid-May in the major corn growing areas). Post-emergence applications are most likely to occur up to the end of June, until corn reaches 12" in height. There will be some variability in timing based on geographical regions.

<u>Sorghum</u>: Applications to corn are most often pre-emergence (mid-June to mid-July in the major sorghum growing areas). Post-emergence applications are most likely to occur up to the end of August. There will be some variability in timing based on geographical regions.

Use Classification: Most atrazine products are restricted use pesticides.

D. Estimated Usage of Pesticide

This section summarizes the best estimates of available pesticide usage information for atrazine from 1990 to 1997. A full listing of all uses of atrazine, with the corresponding use and usage data for each site, has been completed and is in the January 10, 2001 "Quantitative Usage Analysis for Atrazine" document available in the public docket and on the internet. The data, reported on an aggregate and site basis, reflect annual fluctuations in use patterns as well as the variability in using data from various information sources.

Estimates for total annual domestic use of atrazine averages approximately 76.5 million pounds of active ingredient. Crops with the highest weighted average percent crop treated are corn (75%), sugarcane (76%), sorghum (58.5%), sweet corn (processed) (58%) and sweet corn (fresh) (49%). In terms of pounds applied, corn (83%), sorghum (10%), and sugarcane (3%) account for the greatest use. Less than 2% of atrazine is believed to be applied in forestry, turf or other non-agricultural uses.

Table 1. Atrazine Estimated Usage for Representative Sites

Сгор	Pounds Active Ingredient Applied (000) (Wt. Avg.) ¹	Estimated Maximum % Crop Treated	Weighted Average Percent Crop Treated
Food Crops			
Sweet Corn, Fresh	160	59.9	49.5
Sweet Corn, Processed	250	64.6	58.2
Sorghum	7,790	73.7	58.5
Corn	63,800	84.0	75.0
Winter Wheat	300	1.1	0.6
Sugar Cane	2550	2550 95	
Non-Food Crops			
Нау	150	0.7	0.4
Pasture	46	0.1	0.0
Summer Fallow	8	0.1	0.1
Woody Ornamentals	140	na	na
Forestry	48	na	na
Turf - Lawn Care Operators	600	na	na
Sod	160	na	na
Golf Courses	78	na	na

¹Weighted Average is based on data for 1990-1997; the most recent years and more reliable data are weighted more heavily. Based on USDA/NASS and EPA proprietary data.

III. Summary of Atrazine Risk Assessments

The following is a summary of EPA's revised human health and ecological risk findings and conclusions for the triazine herbicide atrazine. These findings and conclusions are fully presented in the following documents, available on EPA's web page at <u>www.epa.gov/pesticides</u> and in the public docket:

- Reregistration Eligibility Science Chapter for Atrazine Environmental Fate and Effects Chapter (April 22, 2002);
- Atrazine: HED's Revised Human Health Risk Assessment for the Reregistration Eligibility Decision (April 16, 2002);
- Addendum and corrections to Occupational and Residential Exposure Chapter for Atrazine (May 23, 2002); and
- Atrazine: Addendum to Revised Human Health Risk Assessment for the Reregistration Eligibility Decision (RED) (January 31, 2003).

These risk assessments for atrazine were presented at a Technical Briefing held on April 16, 2002, and followed by an opportunity for public comment on risk management. The risk assessments presented here form the basis of the Agency's risk management decision for atrazine only; the Agency must consider a cumulative assessment of the risks of all triazine pesticides before any final decisions can be made.

A. Human Health Risk Assessment

EPA issued its preliminary human health risk assessment for atrazine and its metabolites on February 14, 2001 (Phase 3 of the TRAC process). In response to comments and studies submitted during Phase 3, the risk assessment was updated and refined, and released on May 6, 2002. In addition, any new Agency policies were incorporated as appropriate. Major revisions to the human health risk assessment are listed below:

- Revisions to the occupational and residential risk assessments to incorporate more recent data and information received in the response to comments.
- Revisions to the dietary drinking water risk assessment to include additional monitoring data received from the registrant.
- A decision not to require tolerances for hydroxyatrazine.

Exposure scenarios considered in the human health assessment are acute, intermediateterm, and chronic dietary exposure through food plus drinking water; short-term residential exposures from residential applications of atrazine; acute, chronic, and short-term aggregate exposure from all sources (food, drinking water, and residential); and short and intermediateterm occupational exposures.

In the risk assessments presented in this document, the toxicity of atrazine and its chlorinated metabolites are considered to be equivalent; therefore, the risks associated with

exposure to atrazine and its chlorinated metabolites are presented together. The toxicity of the metabolite hydroxyatrazine is considered to be independent of the effects of atrazine; thus, the risks from exposure to hydroxyatrazine are presented independently.

1. Dietary Risk From Food

a. Toxicity and Carcinogenicity

1) Atrazine and the Chlorinated Metabolites

The atrazine toxicity database is extensive. The Agency has reviewed these toxicity studies and has a high degree of confidence in the scientific quality of the toxicity studies conducted with atrazine. Special studies examining the toxicology of atrazine have been performed by the registrant in addition to the required guideline studies. Additionally, EPA's National Health and Environmental Effects Laboratory (NHEERL) has performed studies investigating atrazine's neuroendocrine mode of action and related reproductive and developmental effects.

For the purposes of this risk assessment, the toxicity of atrazine's chlorotriazine metabolites is considered to be equivalent to that of parent atrazine and exposure to those metabolites may occur. Therefore, the chlorotriazine metabolites are included in the atrazine human health risk assessment.

In accordance with the 1999 Interim Guidelines for Carcinogen Risk Assessment, EPA's Cancer Assessment Review Committee (CARC) classified atrazine as "not likely to be carcinogenic to humans". As summarized by the FIFRA Scientific Panel (SAP), "there are considerable differences between hypothalamic-pituitary-ovarian function in rats and humans, and the effects of aging on the function of the axis also is quite dissimilar. Therefore, it is unlikely that the mechanism by which atrazine induces mammary gland tumors in female SD rats could be operational in humans. Nevertheless, it is not unreasonable to expect that atrazine might cause adverse effects on hypothalamic-pituitary function in humans" (SAP, 2000). Although the cancer mode of action may not be operative in humans, the SAP further to state that the same endocrine perturbations that induce tumors also appear to play a role in at least some reproductive developmental effects (not associated with reproductive aging) which may be relevant to humans. The Agency also concluded that the cancer mode of action is not relevant to humans. Consequently, a quantitative cancer risk assessment was not conducted for atrazine. However, EPA agreed in the August 2002 amendment to the Consent Decree in NRDC v. Whitman to present to the SAP data concerning atrazine exposure and prostrate or other cancers in humans that had been received by EPA after the May 2002 risk assessment but prior to February 28, 2003. Any risks identified will be addressed in the revised Atrazine IRED to be issued by October 31, 2003.

As indicated above, the cascade of events triggered by atrazine leading to mammary gland tumors in female SD rats are not expected to occur in humans given the species difference

in reproductive aging. However, the potential for disruption of the hypothalamic pituitary axis and consequent attenuation of the LH surge leading to other health consequences not associated with reproductive aging (e.g., delay in pubertal development) can not be dismissed. Thus, EPA has determined that the triazine pesticides (with a common mechanism group of atrazine, propazine, simazine and their chlorometabolites) have common mechanism of suppression of LH surge and consequent developmental and reproductive effects. It is expected that EPA will complete a preliminary cumulative risk assessment in the winter of 2005; this is contingent on completion of the IREDs for the individual chemicals.

2) Hydroxyatrazine

Atrazine is metabolized to hydroxyatrazine by plants and bacteria. Animals do not metabolize atrazine to hydroxyatrazine; however, they may receive hydroxyatrazine in their diets through forages and fodders.

A limited toxicology database for hydroxyatrazine compounds is available. Hydroxyatrazine appears to be less acutely toxic than the parent atrazine. The only effects seen in any of the submitted studies that may be attributable to a single dose were developmental alterations in the developmental rat study. The developmental alterations seen in this study were seen only at the high dose, were few in number, and were deemed to be not of toxicological significance. Thus, the Agency did not select an acute endpoint for hydroxyatrazine, and concludes that no toxicologically significant endpoint to represent a single exposure can be found in the toxicology database for hydroxyatrazine. Hydroxyatrazine has not been classified as to its carcinogenic potential by the Agency.

Further details on the toxicity of atrazine and its chlorinated and hydroxy metabolites can be found in the April 16, 2002, Revised Human Health Risk Assessment; the January 31, 2002, Addendum to the Revised Human Health Risk Assessment; and all supporting documents. An overview of the studies and safety factors used for the dietary risk assessment is outlined in Table 2.

b. FQPA Safety Factor

The FQPA safety factor is intended to provide up to an additional 10-fold safety factor (10X) to account for potential pre- and post-natal toxicity and the completeness of the data with respect to exposure and toxicity to infants and children.

1) Atrazine and the Chlorinated Metabolites

The FQPA Safety Factor of 10x was retained for atrazine and its chlorinated metabolites to protect the safety of infants and children in assessing risk from dietary (food and drinking water) exposures.

The Agency concluded that, as to dietary risk, the default 10x FQPA safety factor is

required because of the absence of reliable evidence showing that a different safety factor would be protective of infants and children. The principal grounds for this conclusion are:

- residual concerns for the effects of the neuroendocrine mode of action described for atrazine on the development of the young. These concerns could not be accounted for in the determination of toxicity endpoints and traditional uncertainty factors to be used in risk assessment; and,
 - residual concerns with regard to the drinking water exposure assessment. The various water monitoring data sources that exist for atrazine and its chlorinated metabolites indicate that exposure via drinking water sources is high in some of the systems that have been monitored. In addition, widespread low levels are commonly detected. Limitations in the extent, frequency, and compounds tested for in the monitoring data raise significant uncertainties regarding the level of exposure to atrazine and its metabolites.

The 10X FQPA safety factor is being applied across all aggregate risk assessments based on estimated dietary exposures for all populations considered in these risk assessments.

For residential exposures, the FQPA safety factor was reduced to 3x. This is considered adequate to protect the safety of infants and children in assessing residential exposure and risks because the exposure concerns for drinking water included in the 10x FQPA safety factor for dietary exposure do not apply to residential exposure scenarios, although the concerns for the effect of the neuroendocrine mode of action on the development of the young remain. The assumptions inherent to the Agency's residential risk estimates based on screening-level procedures are conservative and protective. The 3x FQPA safety factor is being applied across all aggregate risk assessments based on estimated residential exposures for all populations considered in these risk assessments.

2) Hydroxyatrazine

The FQPA Safety Factor of 10x was removed for atrazine's hydroxymetabolites for the following reasons:

- There was no evidence of increased susceptibility in the prenatal developmental toxicity study in rats with hydroxyatrazine;
- There is no evidence of neurotoxicity from the submitted toxicity studies;
- The neuroendocrine effects described for atrazine are postulated to be part of a cancer mode of action for atrazine. Because hydroxyatrazine is non-carcinogenic, the current belief is that the neuroendocrine effects described for atrazine are not occurring following hydroxyatrazine exposure;
- The dietary and non-dietary exposure assessments do not underestimate the potential

exposures for infants and children; and

The drinking water exposure concerns expressed for atrazine and the chlorinated metabolites do not apply to hydroxyatrazine, given its dissimilar toxicological profile and environmental fate properties that indicate that hydroxyatrazine is less mobile in soil/water systems.

c. Population Adjusted Dose

The population adjusted dose (or PAD) is a term that characterizes the dietary risk of a chemical. The PAD reflects the Reference Dose (RfD), either acute or chronic, that has been adjusted to account for the FQPA safety factor (i.e., RfD/FQPA safety factor). The RfD is calculated by taking the no observed adverse effect level (NOAEL) from an appropriate study and dividing it by an uncertainty factor (i.e., NOAEL/UF). Acute and chronic PADs are equivalent to the acute and chronic RfDs divided by 10, respectively. A risk estimate that is less than 100% of the acute PAD (aPAD) or chronic PAD (cPAD) does not exceed the Agency's level of concern. In the case of atrazine, the FQPA safety factor of 10x was retained for dietary exposures; therefore, the RfD is ten times greater than the PAD. The PADs are presented in Tables 2 and 3 below for atrazine and hydroxyatrazine, respectively.

Table 2. Summary of Toxicological Endpoints and Other Factors Used in the Dietary
Risk Assessment of Atrazine and Its Chlorinated Metabolites

Exposure Scenario	Dose (mg/kg/day) UF FQPA SF Endpoint		Study		
Acute Dietary (females 13 to 50 yrs old)	NOAEL= 10 LOAEL = 70	100	10	Delayed ossification of certain cranial bones in fetuses, decreased body weight gain in adult	Developmental toxicity study in rat & rabbit (weight of evidence from four studies)
	Acute RfD = 0.1 mg/kg/day Acute PAD = 0.01 mg/kg/day				
Intermediate and Chronic	NOAEL = 1.8 LOAEL = 3.65	100	10	Attenuation of pre-ovulatory lutenizing hormone (LH) surge, as a biomarker indicative of hypothalamic function disruption	Six-month LH surge study-Rat
		-		conic RfD = 0.018 mg/kg/day onic PAD = 0.0018 mg/kg/day	

UF = Uncertainty Factor (100 is the result of a 10x for interspecies variability and 10x for intraspecies extrapolation); SF=Safety Factor; PAD = Population Adjusted Dose

Table 3. Summary of Toxicological Endpoints and Other Factors Used in the Human Dietary (Food) Risk Assessment of Hydroxyatrazine, a Metabolite of Atrazine

Exposure Scenario	Dose (mg/kg/day)	UF ¹	FQPA SF ¹	Endpoint	Study	
Acute Dietary	None selected	na	na	An appropriate endpoint attributable to a single dose was not identified (no toxic effect seen)	None selected	
	Acute RfD = Not Established					
Chronic Dietary	NOAEL = 1.0 LOAEL = 7.75	100	1	Histopathological lesions of the kidneys	Combined chronic toxicity/ carcinogenicity -Rat	
			Chro	Chronic RfD = 0.01 onic PAD = 0.01 mg/kg/day		

UF = Uncertainty Factor (100 is the result of a 10x for interspecies variability and 10x for intraspecies extrapolation); SF=Safety Factor; PAD = Population Adjusted Dose

d. Exposure Assumptions

The Agency conducts dietary (food) risk assessments using the Dietary Exposure Evaluation Model (DEEMTM). DEEM incorporates consumption data generated in USDA's Continuing Survey of Food Intake by Individuals (CSFII), 1989-92. For the assessment of dietary exposure to residues of atrazine, monitoring data generated through the USDA Pesticide Data Program (PDP) and through the Food and Drug Administration (FDA) Surveillance Monitoring Program were used for wheat grain. Anticipated residue values from crop residue field trial studies and information from metabolism studies were used for most crops. For guava, tolerance level residues were used.

For acute probabilistic dietary (food) risk assessments, the entire distribution of singleday food consumption events is combined with a distribution of residues to obtain a distribution of exposure in mg/kg/day. Chronic dietary (food) risk assessments use the three day average of consumption for each subpopulation combined with residues in commodities to determine average exposure in mg/kg/day.

e. Food Risk Characterization

Generally, a dietary (food) risk estimate that is less than 100% of the acute or chronic PAD does not exceed the Agency's risk concern. Acute and chronic risk estimates from exposures to food associated with the use of atrazine did not exceed the Agency's level of concern.

1) Atrazine and Its Chlorinated Metabolites

The percent acute PAD value for the relevant population subgroup considered under the acute risk assessment, females 13 to 50 years old, is less than 1 at the 99.9th percentile of exposure. The percent chronic PAD values for all exposed population subgroups were less than 1, as well. These estimates of risk based on one-day and long-term exposures to atrazine and its chlorinated metabolites from residues on food alone are below the Agency's level of concern.

2) Hydroxyatrazine

No acute toxicological endpoint was identified for hydroxyatrazine; therefore, an acute risk assessment for hydroxyatrazine and the hydroxylated metabolites was not conducted. The percent chronic PAD values were less than 1 for all population subgroups considered in the risk assessment. Therefore, estimates of risk based on long-term exposures to hydroxyatrazine from residues on food alone are below the Agency's level of concern.

2. Dietary Risk from Drinking Water

Exposure to pesticides from drinking water can occur through residues in ground water and surface water. In the assessment for atrazine, EPA considers both acute (one day), intermediate-term (seasonal), and chronic (annual) exposures to residues in drinking water risks and uses actual monitoring data to characterize those risks.

Drinking water risk from the application of atrazine is assessed based on exposures to combined residues of atrazine and the chlorinated metabolites. These are the only atrazine-related compounds expected to occur in drinking water in significant quantities. Extensive monitoring data are available for atrazine parent in finished drinking water, and some monitoring data are available for the chlorinated metabolites. This monitoring data is the basis for the Agency's drinking water risk assessment. To estimate the levels of chlorinated metabolites in areas where monitoring data is not available for those metabolites, the Agency developed a model based on the available monitoring data which the Agency believes provides a reasonable estimate of the levels of the chlorinated metabolites that could be expected in drinking water.

A qualitative assessment of exposure to the hydroxy metabolites of atrazine in drinking water has been conducted by the Agency. Exposure to these compounds is expected to be significantly less than exposure to atrazine and the chlorinated metabolites based on the characteristics of these metabolites. Therefore, the Agency has not included the hydroxy metabolites in its quantitative risk assessment for drinking water

Risk estimates for exposures to residues of atrazine and its chlorinated metabolites in drinking water are provided for populations receiving their drinking water from community water systems (CWS) using surface water, CWS using groundwater; and individual rural wells located in atrazine use areas. Exposure assessments were conducted for about 33 percent of the CWS using surface water in the United States, serving approximately 65 million people in 31 atrazine use states. These CWS represent about 99% of atrazine use. The Agency uses

monitoring data for finished (i.e., treated) drinking water in the assessment presented here.

The Agency initially conducted a deterministic (screening-level) drinking water risk assessment for atrazine and its chlorinated metabolites. The initial assessment identified specific CWS and rural wells as having concentrations of atrazine and its chlorinated metabolites above the Agency's level of concern. The CWS of concern were assessed probabilistically to refine the risk estimates; insufficient data were available to refine the risk estimates for rural wells.

a. Drinking Water Levels of Comparison (DWLOC)

To determine the maximum allowable contribution of water containing pesticide residues permitted in the diet, EPA first looks at how much of the overall allowable risk is contributed by food (and if appropriate, residential uses) then determines a "drinking water level of comparison" (DWLOC) to determine whether modeled or monitoring levels exceed this level. The Agency uses the DWLOC as a surrogate to capture risk associated with exposure from pesticides in drinking water. The DWLOC is the maximum concentration in drinking water that, when considered together with dietary (food) exposure, does not exceed a level of concern. Calculated DWLOCs are presented in Table 4 below.

The results of the Agency's drinking water analysis are summarized here. Details of this analysis are found in the HED Human Health Risk Assessment dated April 16, 2002, the EFED Environmental Risk Assessment dated April 20, 2002.

Table 4. Summary of Lowest DWLOC Values for Atrazine and Its Chlorinated
Metabolites

	DWLOC (ppb)		
Population Subgroup	Acute (One Day) Exposure	Intermediate (Seasonal) and Chronic (Annual) Exposure	
General Population	not available	68	
Infants < 1 year old	not available	12.5	
Children 1 to 6	not available	23	
Children 7 to 12	not available	53	
Females 13 to 50	298	60	
Males 13 to 19	not available	68	
Males 20 and over	not available	68	
Seniors	not available	68	

1) Community Water Systems (CWS) Using Surface

Water

a) Acute Risk

Based on the Agency's deterministic assessment, the measured maximum one-day concentrations of atrazine plus estimates of the chlorinated metabolites in drinking water do not exceed the Agency's level of concern for acute effects, regardless of source, for any relevant population subgroup.

Based on the Agency's screening-level deterministic assessment, one-day concentrations less than the DWLOC of 298 ppb do not exceed the level of concern for acute effects. The maximum measured concentration of atrazine and its chlorinated metabolites in any CWS monitoring for atrazine from 1993 to 1998 was 89 ppb.

b) Intermediate-Term (Seasonal) and Chronic (Annual) Risk

As stated previously, the drinking water concerns expressed for atrazine and its chlorinated metabolites do not apply to hydroxyatrazine because of its toxicology profile and environmental fate profile.

Under the Agency's screening-level assessment for intermediate-term and chronic exposures to atrazine and its chlorinated metabolites, 34 out of the 3670 CWS assessed were above the Agency's level of concern based on a comparison of average seasonal concentrations to the chronic infant DWLOC of 12.5 ppb. These CWS were identified with quarterly average concentrations of chlorotriazines above levels of concern for infants in one, two, or three years between 1993 and 2001. In addition, several of the 34 had annual average concentrations above the levels of concern for children 1 to 6 years old and adults.

A probabilistic exposure assessment was conducted for 39 CWS, most of which were identified as being of concern under the screening-level assessment, as listed above. Risk estimates based on a probabilistic exposure assessment that estimated 90-day average exposures to atrazine and the chlorinated metabolites indicate that 34 CWS have seasonal concentrations that exceed levels of concern for infants at the 99.9th percentile of exposure.

In total, 34 CWS serving ~230,000 to 240,000 people had 90-day average exposures that exceeded levels of concern for infants in one, two, three, or four years between 1993 and 2001. Risk estimates for these CWS ranged from 100% to 670% of the chronic PAD for infants at the 99.9th percentile of exposure, and several exceeded levels of concern for children 1 to 6 years old and adults as well. The CWS identified and the cPADs for these systems are listed in Table 5 below.

Table 5. Risk Estimates for High Seasonal Exposures to Atrazine in Finished Drinking Water at the 99.9th Percentile of Exposure* (CalandexTM)

Community Water System (City/State)	Infant % cPAD	Children 1 - 6 % cPAD	Adult % cPAD
Chariton, IA	235	<100	<100
Sorento, IL	183	<100	<100
Flora, IL	211	<100	<100
W. Salem, IL	189	100	<100
Farina, IL	189	<100	<100
White Hall, IL	278	117	<100
Carlinville, IL	128	<100	<100
Gillespie, IL	550	222	172
Hettick, IL	544	222	172
Shipman, IL	<100	<100	<100
Palmyra-Modesto, IL	350	155	111
N. Otter Twp ADGPTV, IL	189	<100	<100
Kinmundy, IL	150	<100	<100
Salem, IL	528	267	200
Centralia, IL	255	100	<100
Hillsboro, IL	272	117	<100
Louisville, IL	344	122	<100
North Vernon, IN	200	117	<100
Omaha, IL	250	111	<100
Holland, IN	244	128	<100
Batesville, IN	261	111	<100
Scottsburg, IN	267	150	105
Lewisburg, KY	317	128	<100
Marion, KY	317	128	<100
Iberville, LA	261	117	<100
Dearborn, MO	555	228	155
Bucklin, MO	250	100	<100
Vandalia, MO	189	105	<100
Sardinia, OH	667	305	205
Delaware, OH	155	<100	<100

Community Water System (City/State)	Infant % cPAD	Children 1 - 6 % cPAD	Adult % cPAD
Clermont County, OH	144	<100	<100
Williamsburg, OH	289	122	<100
Mt. Orab, OH	200	<100	<100
Newark, OH	111	<100	<100

The Agency notes that the Shipman reservoir no longer serves as a drinking water source; in 1999 the town of Shipman was switched to an alternative source of drinking water. The drinking water source at White Hall was switched from surface water to groundwater in 1997. It is the Agency's understanding that Hettick, IL is also in the process of defining a new source for their drinking water needs and will close down the Hettick reservoir in the next couple of years.

The seasonal pulses of atrazine and the chlorinated metabolites detected in monitoring data that resulted in exposures above the Agency's level of concern spanned from several weeks to several months. Typically, for the year with exposures of concern, pulses lasted from early spring through the summer and into the fall, and some CWS had high pulses almost all year long. The higher concentrations occurring in the spring and early summer influence the 90-day average concentrations all year long.

2) Groundwater

Risk estimates based on screening-level assessments for 14,500 CWS using groundwater (~33 percent of groundwater CWS in the U.S.) do not exceed the Agency's level of concern for acute or chronic effects.

Data to estimate concentrations of the chlorinated metabolites of atrazine in these CWS using groundwater in 21 major atrazine use states have been developed. The highest concentration of atrazine and the chlorinated metabolites measured in any CWS in the data set was ~11 ppb. The 99th percentile concentration value for chlorotriazines in CWS with prior detections of atrazine was 1.9 ppb. Both the maximum measured value and the 99th percentile value are less than the acute DWLOC of 298 ppb, and do not exceed the Agency's level of concern for acute effects.

The 50th percentile concentration value was 0.180 ppb for CWS with prior detections. The mean concentration value at the 95 percent upper confidence bound was 0.55 ppb for CWS with prior detections. Both are less than the lowest intermediate-term to chronic DWLOC of 12.5 ppb, and do not exceed the Agency's level of concern for chronic effects.

The Agency believes that CWS using groundwater are not impacted as heavily by atrazine use as CWS using surface water.

3) Domestic Rural Wells

Approximately 10% of the U.S. population receives their drinking water from rural wells, cisterns or springs. These sources of drinking water are not regulated under the SDWA. Acute exposures to atrazine and the chlorinated metabolites in drinking water from rural wells do not exceed the Agency's level of concern. The maximum measured concentration of atrazine plus the chlorinated metabolites in the rural drinking water wells in atrazine use areas monitored by the registrant was 18 ppb; much less than the acute DWLOC (females 13 to 50) of 298 ppb. In addition, chronic exposures of adult populations using rural wells for drinking water do not exceed the Agency's level of concern.

However, the Agency has some concerns for chronic exposures of infants and children drawing drinking water from rural wells located directly in atrazine use areas, i.e., adjacent to fields where atrazine was used. Eight wells out of 1505 wells monitored had residues of atrazine and the chlorinated metabolites approaching, equal to, or greater than the chronic DWLOC (infants <1 year old) of 12.5 ppb. The 1505 wells monitored were selected based on their location in areas with high atrazine use. Of these, eight wells were resampled in March 2001, one sample per well. All samples showed concentrations of atrazine and the chlorinated metabolites less than the DWLOC of 12.5 ppb.

Although the data indicate that levels are decreasing in these wells over time, the Agency continues to have uncertainty regarding subchronic and chronic exposures of infants using private rural wells in close proximity to atrazine use areas for the several reasons. It is difficult to interpret typical exposures in rural wells close to atrazine use areas based on two samples taken many years apart. There are approximately 13 million drinking water wells in the U.S., thus, the rural well survey (1,505 wells) is inadequate to fully assess exposures to the entire U.S. population that uses rural wells for drinking water. And finally, limited sampling from the wells in the survey results in a high level of uncertainty regarding exposures to atrazine and the chlorotriazine metabolites for the population using rural wells for drinking water.

2. Residential Risk

Atrazine is registered for use by homeowners to control weeds in turf grass. Homeowners mixing, loading, and applying atrazine products to their lawns may be exposed to atrazine through their skin and by inhaling dusts or sprays during application. Residential exposures are only applicable for those regions of the United States where atrazine is used on turf grass, generally the Southeast (including Florida).

Adults or children can also be exposed to atrazine after application has occurred through contact with treated lawns or other turf areas (i.e., golf courses). In this instance, inhalation exposures are not expected; however, post-application dermal exposures for homeowners and children (yard work, walking, playing, crawling) and incidental oral exposure for toddlers are possible. Exposure data are not available on atrazine's chlorinated metabolites and hydroxy metabolites; however, residues of the chlorinated metabolites and hydroxy metabolites are not expected to occur on the surfaces of plants. Therefore, any residential exposure to these metabolites would be minimal, and risks were not assessed.

The Agency recognizes that there may be concerns for the potential for children's exposure in the home as a result of agricultural uses of atrazine. Environmental concentrations of atrazine in homes may result from spray drift, track-in, or from redistribution of residues brought home on the farmworker's clothing. Potential routes of exposure for children may include incidental ingestion and dermal contact with residues on carpets/hard surfaces. Studies are currently being pilot-tested that will look for sources of major pesticide exposure (including exposure to atrazine) and will attempt to quantify these exposures.

Risk for all of the potentially exposed populations is measured by a Margin of Exposure (MOE). A MOE determines how close the amount of residue that individuals are exposed to come to a No Observed Adverse Effect Level (NOAEL), whether exposures are from the use of a pesticide or from pesticide residues after application. For atrazine, MOEs greater than 300 (10 interspecies uncertainty x 10 intraspecies variability x 3 FQPA) do not exceed the Agency's level of concern.

a. Toxicity

The toxicity of atrazine is integral to assessing the residential risk. The toxicological endpoints and other factors used in the residential risk assessment for atrazine are described below and summarized in Table 6.

As mentioned earlier, the FQPA safety factor for residential exposures was reduced to 3x. This is considered adequate to protect the safety of infants and children in assessing residential exposure and risks because the uncertainties relating to drinking water exposure and the existing monitoring data included in the 10x FQPA safety factor for dietary exposure do not apply to residential exposure scenarios. Concerns for the effect of the neuroendocrine mode of action on the development of the young remain. The assumptions inherent to the Agency's residential risk estimates based on screening-level procedures are conservative and protective. The 3x FQPA safety factor is being applied across all aggregate risk assessments based on estimated residential exposures for all populations considered in these risk assessments.

Exposure Scenario	Dose (mg/kg/day)	UF ¹	FQPA Safety Factor	Endpoint	Study
Oral, Short-Term	NOAEL= 6.25 LOAEL = 12.5	100	3	Delayed preputial separation in male offspring after 30 days of dosing.	Pubertal assay (30- day) NHEERL published literature
Oral, Intermediate- Term	NOAEL = 1.8 LOAEL = 3.65	100	3	Attenuation of pre-ovulatory lutenizing hormone (LH) surge, as a biomarker indicative of hypothalamic function disruption	Six-month LH surge- Rat

Table 6. Summary of Toxicological Endpoints and Other Factors Used in the Atrazine
Residential Human Health Risk Assessment

Table 6. Summary of Toxicological Endpoints and Other Factors Used in the Atrazine Residential Human Health Risk Assessment

Exposure Scenario	Dose (mg/kg/day)	UF ¹	FQPA Safety Factor	Endpoint	Study
Dermal, Short-Term ^a	NOAEL= 6.25 LOAEL = 12.5	100	3	Delayed preputial separation in male offspring after 30 days of dosing. Use of the dermal penetration factor yields a dose of 104 mg/kg/day.	Pubertal assay (30- day) NHEERL published literature
Dermal, Intermediate- and Long-Term ^b	NOAEL= 1.8 LOAEL = 3.65	100	3	Attenuation of pre-ovulatory lutenizing hormone (LH) surge, as a biomarker indicative of hypothalamic function disruption	Six-month LH surge- Rat
Inhalation, Short-Term [°]	NOAEL= 6.25 LOAEL = 12.5	100	3	Delayed preputial separation in male offspring after 30 days of dosing.	Pubertal assay (30- day) NHEERL published literature
Inhalation, Intermediate and Long-Term ^c	NOAEL= 1.8 LOAEL = 3.65	100	3	Attenuation of pre-ovulatory lutenizing hormone (LH) surge, as a biomarker indicative of hypothalamic function disruption	Six-month LH surge-Rat

 ${}^{1}\text{UF}$ = Uncertainty Factor (100 is the result of a 10x for interspecies variability and 10x for intraspecies extrapolation)

a = The NOAEL of 6.25 mg/kg/day is multiplied by a 3.6 dermal penetration factor.

b = 6% dermal absorption factor for route-to-route extrapolation.

c = 100% absorption factor for route-to-route extrapolation.

Residential = A MOE of 300 is required and includes the 3x FQPA Safety Factor

b. Exposure Assumptions

Residential exposures to atrazine are expected to be short-term in duration (1 to 30 days), based on label directions that specify no more than two applications of atrazine to home lawns. Exposures greater than 30 days are not expected because no currently registered residential use products would result in exposures of this duration due to the use pattern and turf residue dissipation data on atrazine.

Chemical-specific exposure data, including a Turf Transferable Residue study on atrazine, and data on residential handlers applying granular and liquid formulations submitted by the Outdoor Residential Exposure Task Force (ORETF) were used to assess the exposure to atrazine as a result of residential application. In addition, analyses were performed using the unit exposure values in the *Pesticide Handlers Exposure Database* (PHED), Version 1.1 (August 1998) and using standard assumptions (average body weight, work day, daily areas treated, volume of pesticide used, etc.).

The quality of the data and exposure factors represents the best sources of data currently

US EPA ARCHIVE DOCUMENT

available to the Agency for completing these kinds of assessments. For example, if appropriate chemical-specific exposure data are available for atrazine, those data are used instead of the more generic PHED data. The quality of the data used for each scenario assessed, standard procedures, and any assumptions made are further discussed in the April 16, 2002, Revised Human Health Risk Assessment; the August 2002 Revised Occupational and Residential Risk Assessment; and the January 31, 2003, Addendum to the Revised Human Health Risk Assessment available in the public docket and online.

Anticipated use patterns and application methods, range of application rates, and area of lawn treated per day were derived directly from current atrazine labels for residential products. Application rates specified on atrazine labels for residential uses range up to 2 pounds of active ingredient per acre on residential turf.

The Agency also considered exposure to adults or children entering or playing on treated lawns or entering homes after application of atrazine products (post-application exposure). These activities are expected to result in short-term exposure (1 to 30 days), based on atrazine turf residue dissipation data and atrazine's residential use pattern. These data show that atrazine has a half-life on turf of up to 5 days after spraying or 9 days after granular application, and requires several weeks to dissipate. However, the Agency does not expect exposures greater than 30 days, even considering the slow dissipation rates, because the label prohibits application more than twice per year.

Residential post-application exposure assessments assumed residents wear the following attire: short sleeved shirt, short pants, shoes and socks, and no gloves.

c. Residential Applicator Risk

The anticipated use patterns and current labeling for atrazine homeowner products indicate 5 major exposure scenarios for residential applicators, as follows:

- (1) mixing/loading/applying liquid formulations using a backpack sprayer,
- (2) mixing/loading/applying liquid formulations for application with a low pressure handwand,
- (3) mixing/loading/applying liquid formulations for hose-end sprayer,
- (4) loading/applying granular formulations with a push type spreader, and
- (5) loading/applying granular formulations with a bellygrinder.

The Agency does not believe the addition of personal protective equipment (PPE) to residential handlers (as used for assessing occupational handler risk) is appropriate for homeowner handler exposure assessments. Homeowners often lack access to PPE and do not possess expertise in the proper use of PPE. As a result, homeowner handler assessments are completed using a single scenario based on the use of short-sleeved shirts and short pants, common homeowner attire during the pesticide application season. In addition, as mentioned above, only short-term exposures were assessed, as the Agency does not believe homeowners who apply atrazine will be exposed for more than a few consecutive days.

All of the residential handler exposure scenarios considered in the risk assessment, with the exception of the scenario for application of granular formulations via a bellygrinder as a broadcast application, were below the Agency's level of concern (MOEs > 300). MOEs calculated for each homeowner handler scenario are presented in Table 7, as follows:

Scenario	Rate (lb ai/A)	Short-Term MOE
(1) Mixing, loading, and applying liquid formulations via backpack sprayer	2	28,000
(2) Mixing, loading, and applying liquid formulations via low pressure handwand	2	1,600
(3) Mixing, loading, and applying liquid formulations via hose-end sprayer	2	640 ^a
(4) Loading and applying granular formulations via push type spreader	2	1,100 ^a
(5) Loading and applying granular formulations via bellygrinder	2	65 (broadcast) 1,400 (spot treatment)

^a Calculated using ORETF Unit Exposure Values

d. Post-Application Residential Risk

Atrazine can be used on home lawns, golf courses, and on other turf areas where exposure to adults and children may occur. Dermal exposure to atrazine may result from entering the treated area, performing yard work (e.g., mowing), playing or performing other recreational activities (e.g., golfing) on the treated areas. In addition, incidental oral post-application exposure to children may occur from "hand-to-mouth" (i.e., ingestion of grass, soil and/or granular pellets; or hand-to-mouth contact) exposure when reentering treated lawns.

The Agency does not expect post-application inhalation exposure to atrazine to occur because of low chemical vapor pressure and dilution of vapor outdoors. Thus, this exposure was not assessed. Handler study data support this conclusion.

Representative turf reentry activities include, but are not limited to:

- (1) Adults involved in a low exposure activity, such as golfing or walking on treated turf.
- (2) Adults mowing or other moderate contact activity, for 1-2 hours.
- (3) Adults involved in a high exposure activity, such as heavy yard work (doses similar to occupational scenarios for cutting and harvesting sod).
- (4) Children involved in high exposure activities on turf.

The Agency has risk concerns for post-application residential exposures to children from incidental oral contact. In children exposed to treated lawns after application of liquid atrazine

formulations, hand-to-mouth activities and combined oral exposures result in MOEs above the Agency's level of concern. MOEs are 210 for hand-to-mouth activities and 200 for combined oral exposures. In addition, for children exposed to treated lawns after granular applications, the Agency has concerns for incidental ingestion of granules. The MOEs for this scenario range from 16 to 110.

Scenario		Application Rate (lb ai/A)	MOE			
			Liquid		Granular	
			GA	NC	GA ¹	\mathbf{FL}^1
Adult						
Dermal	Turf Contact	2	510		4300	1200
	Walking, Golfing	2	7400		62,000	17,000
	Push Mowing Lawn	2	15,000		120,000	34,000
Child						
Dermal	Turf Contact	2	310		2,600	690
Oral	Hand to Mouth Activity	2	2	10	950	
	Turfgrass/Object Mouthing	2	3300			
	Ingestion of Soil	2	62,500			
	Combined ²	2	200		730	
	Ingestion of Granules	2	n/a		16-31 (1.5% ai) 57-110 (0.42% ai)	

Table 8: Residential Short-Term Post-Application Risk Estimates from Atrazin	e
Application to Lawns	

The MOEs presented here represent non-irrigated turf. As these MOEs were acceptable, irrigated turf MOEs, generally higher than non-irrigated, were not presented.

Combined includes Hand-to-mouth activity, turfgrass/object mouthing; and ingestion of soil. Ingestion of granules is not included because this is considered an infrequent, episodic event.

Adults may reasonably be expected to perform more than one activity on treated lawns in a single day, but an eight-hour duration of exposure is unlikely. Therefore, it is reasonable to aggregate the exposures from playing/gardening (highest exposure rate), walking, and mowing (lower exposure rate) for a single MOE. The MOE for all post-application adult exposures combined is 460 and is above the Agency's level of concern. It is also possible that an adult would apply herbicide spray to a lawn and then play on it or mow it later that day. In such an event, the aggregated dermal MOE for the day would be slightly lower than the target 300 for that day (MOE=270), based on the liquid application study values, but not based on the granular residue data. However, this not very likely and is considered a high-end estimate of exposure.

2

It is likely that dermal and oral incidental exposures may occur in the same day for children playing on atrazine-treated lawn. It can be seen from the MOEs presented in Table 8 that the incidental hand-to-mouth (licking fingers) exposure estimate constitutes most of this oral exposure. The overall MOE of 200 is only slightly less than the MOE of 210 for the hand-to-mouth estimate. The individual dermal and oral routes of exposure each exceed the level of concern, and aggregating these estimates results in an even lower MOE. Ingestion of granules is not aggregated because it is considered an infrequent, episodic event.

3. Aggregate Risk

Aggregate risk assessments have been conducted for acute, short-term, and intermediateterm to chronic exposures to atrazine and the chlorinated metabolites. Aggregate risk assessments look at the combined risk from dietary exposure (food and drinking water) and nonoccupational (e.g., residential, golfers, etc...). The acute aggregate risk assessment combines exposures to atrazine and the chlorinated metabolites in food and drinking water. The short-term aggregate risk assessment combines exposures to atrazine and the chlorinated metabolites in food and drinking water with residential exposures to atrazine, *per se*, occurring between 1 and 30 days after use of atrazine products at home. The intermediate-term and chronic aggregate risk assessment combines exposures to atrazine and the chlorinated metabolites in food and drinking water alone because intermediate-term (30 days to several months) and chronic (several months to lifetime) exposure scenarios for the registered non-occupational uses of atrazine are not expected.

Although a risk assessment for exposures to atrazine's hydroxylated metabolites in food was conducted, risk assessments aggregating exposures to atrazine's hydroxylated metabolites in food, drinking water, and in residential settings were not. There is limited data on hydroxyatrazine in water, and exposure to the hydroxy metabolites of atrazine in drinking water is not expected to be significant relative to the chlorinated metabolites. In addition, the Agency does not expect exposure to hydroxyatrazine from applications of atrazine to turf because hydroxyatrazine is formed within plant tissues, not on plant surfaces.

a. Acute Aggregate Exposure and Risk Estimates

The aggregate risk assessment for acute exposures to atrazine and the chlorinated metabolites combines high-end one-day exposures through food and drinking water alone. The Agency does not believe that high-end exposures through food, drinking water, and residential use will all occur on the same day. Therefore, acute aggregate risk estimates are the same as those presented for acute drinking water risks. Exposure to atrazine from food sources and drinking water do not exceed the Agency's level of concern for acute dietary risk for any relevant subgroup, as described previously in Section III.A.2.a.3.

b. Intermediate-Term and Chronic Aggregate Exposure and Risk Estimates

The aggregate risk assessment for intermediate-term and chronic exposures to atrazine

and the chlorinated metabolites combines estimates of high-end seasonal or long-term average exposures to atrazine in drinking water with long-term average exposures to atrazine in food. Neither intermediate-term nor long-term (chronic) exposures are expected to occur in the home from residential uses of atrazine. Therefore, intermediate-term and chronic aggregate risk estimates are the same as those presented for intermediate-term and chronic drinking water risks (see section III.A.2.a.3). Infants and children are potentially at risk from exposures to combined residues of atrazine plus its chlorinated metabolites from 34 CWS using surface water based on available monitoring data. Aggregate intermediate-term and chronic exposures in CWS using groundwater are not of concern.

c. Short-Term Aggregate Exposure and Risk Estimates

Short-term estimates of aggregate risk were calculated for adult applicators and children and adults exposed to residues of atrazine after application to home lawns. Short-term aggregate risk estimates that include residential exposures are only applicable for those regions of the United States where atrazine is used on turf grass (residential and golf courses), generally the Southeast (including Florida).

The theoretical upper limit in drinking water for short-term exposures is referred to as a short-term DWLOC and is based on exposure estimates for adults and children from average residues of atrazine in food and exposure to high-end atrazine residues during application or immediately after application of atrazine to lawns. If the short-term DWLOC values are greater than the measured average concentrations for atrazine residues in surface water and groundwater, there is no concern for short-term aggregate exposures to atrazine residues through food, drinking water, and non-occupational uses. Measured concentrations of atrazine residues in surface water and groundwater from monitoring data (as presented earlier in this document) were compared to the calculated short-term DWLOCs.

1) Adult Handlers

Short-term estimates of aggregate risk to adults applying atrazine products to the lawn and garden combines exposures through the dermal, dietary (food and drinking water), and inhalation routes. These exposures have a common toxic effect, delayed puberty as a biomarker for neuroendocrine effects.

Table 9 below presents the results of the Agency's short-term aggregate risk assessment for adult handlers of atrazine. Of the five exposure scenarios evaluated, only applications of granular formulations of atrazine applied over 0.5 acres with a belly-grinder results in aggregate exposures that exceed the Agency's level of concern.

Aggregate short-term DWLOC values are presented for the five adult handler scenarios in Table 9. The first four DWLOCs presented are greater than the measured maximum weekly concentration of 89 ppb atrazine and the chlorotriazines in finished drinking water; thus, these scenarios are not of concern to the Agency. A DWLOC of 0 is assigned for adults applying via belly grinder because this residential scenario alone exceeds the Agency's level of concern; thus,
this scenario is also of concern when aggregated with dietary and drinking water routes of exposure.

Exposure Scenario	Aggregate MOE (Dermal and Inhalation)	Short Term DWLOC (ppb)
(1) Mixing, loading, and applying liquid formulations via backpack sprayer	28,000	219
(2) Mixing, loading, and applying liquid formulations via low pressure handwand	1,600	273
(3) Mixing, loading, and applying liquid formulations via hose-end sprayer	640	105
(4) Loading and applying granular formulations via push- type spreader	11,000	159
(5) Loading and applying granular formulations via belly grinder	65	0

Table 9. Short Term Aggregate DWLOCs - Adults applying atrazine at 2 lb ai/A to lawns.

2) Adult Post-Application

Short-term estimates of aggregate risk for adults from post-application exposures combine dietary exposure and post-application dermal exposures after atrazine lawn treatment . Short-term dermal and dietary exposures have a common toxic effect: delayed puberty as a biomarker for neuroendocrine effects.

Table 10 summarizes the results of the Agency's aggregate risk assessment for short-term exposures of adults exposed to atrazine-treated lawns immediately after application. Short-term aggregate risk estimates do not exceed the Agency's level of concern. Weekly concentrations of atrazine and the chlorotriazine metabolites have been measured in drinking water up to 89 ppb; since this concentration is less than the remaining DWLOCs, the aggregate risk is acceptable.

Table 10. Short Term Aggregate DWLOCs - Adults exposed to atrazine after application to lawns at 2 lb ai/A.

Exposure Scenario (formulation)	Dermal MOE	Short Term DWLOC (ppb)
Dermal Turf Contact (liquid)	510	130
Dermal Turf Contact (granular)	1200	157
Dermal Contact Walking/Playing Golf (liquid)	7,800	210
Dermal Contact Walking/Playing Golf (granular)	16,000	215
Dermal Contact Pushing Lawn Mower (liquid)	16,000	214

Table 10. Short Term Aggregate DWLOCs - Adults exposed to atrazine after application to lawns at 2 lb ai/A.

Exposure Scenario (formulation)	Dermal MOE	Short Term DWLOC (ppb)
Dermal Contact Pushing Lawn Mower (granular)	35,000	217

3) Child Post-Application

Short-term estimates of aggregate risk to toddlers from post-application residential exposure to atrazine combine dietary exposures with post-application dermal and incidental oral exposures after atrazine lawn treatment.

Aggregate risk estimates for short-term exposures to toddlers playing on liquid atrazinetreated lawns exceed EPA's level of concern. Risks to children from aggregated oral residential post-application exposures (hand-to-mouth transfer of residues, grass and soil ingestion activities by toddlers on grass) are of concern for liquid formulations (MOE = 200); therefore, any aggregation through the dermal, inhalation or dietary pathways would result in risk estimates that further exceed the Agency's level of concern.

Toddlers' risk estimates from individual or aggregated (combined) pathways for incidental oral exposures based on granular formulations do not exceed the Agency's levels of concern; i.e., a MOE of 730. Toddlers' risk estimates from dermal exposures based on granular formulations also do not exceed the Agency's levels of concern; i.e., MOEs of 690 (for applications that are not_watered-in immediately after application and 2000 for applications that are watered-in immediately after application). Combined dermal and incidental oral exposures for toddlers result in a MOE of 350 or greater and also do not exceed the Agency's level of concern. Short-term DWLOCs for toddlers' post application aggregate exposures, inclusive of dermal, incidental oral, and dietary (food + drinking water) exposures, do not exceed HED's level of concern for granular formulations watered-in after application to turf. Short-term DWLOCs for toddlers' post application aggregate exposures, is level of concern for granular formulations aggregate exposures exceed the Agency's level of concern for granular formulations.

Exposure to atrazine through ingestion of granules by toddlers result in MOEs of 16 to 110. Granule ingestion by toddlers is considered an episodic event (a stand alone incident) and has not been aggregated with either other incidental oral exposures or dermal and dietary exposures.

Table 11 below presents the short-term aggregate MOEs and DWLOCs for toddlers exposed to atrazine after lawn applications.

Type of Exposure	Formulation/Application Rate (lbs ai/acre)	Dermal MOE	Aggregate Incidental Oral MOE	Short-Term DWLOC (ppb)
Dermal Contact on Turf	2 lb ai/acre (liquid)	310	200	zero
Dermal Contact on Turf	1 lb ai/acre (liquid)	610	390	zero
Dermal Contact on Turf	2 lb ai/acre (granular) without watering-in	690	730	12 - 14
Dermal Contact on Turf	2 lb ai/acre (granular) with watering-in	2000	730	35 - 39

 Table 11. Short-Term Aggregate DWLOCs - Toddlers exposed to atrazine after liquid and granular applications to lawns.

4. Occupational Risk

Workers handling pesticide products can be exposed to atrazine through mixing, loading, and/or applying this pesticide, and through reentering treated sites. Occupational handlers of atrazine include: individual farmers and other growers who mix, load, and/or apply pesticides; commercial, professional, or custom agricultural applicators; commercial pest control operators; and lawn care and turf management professionals. The post-application occupational risk assessment considered exposures to workers entering treated sites in agriculture. Risk for all of these potentially exposed populations is measured by a Margin of Exposure (MOE) which determines how close the occupational or residential exposure comes to a No Observed Adverse Effect Level (NOAEL). Generally, MOEs greater than 100 do not exceed the Agency's risk concern.

a. Toxicity

The toxicity of atrazine is integral to assessing the occupational risk. The Agency has conducted short-term and intermediate-term dermal and inhalation exposure assessments for the occupational handler. In addition, the Agency has conducted short-term post-application dermal and inhalation exposure assessments. Long-term (chronic) occupational exposures are not anticipated based on atrazine's use pattern.

All risk estimates are based on the most current toxicity information available for atrazine, including a 21-day dermal toxicity study. The toxicological endpoints, and other factors used in the occupational risk assessments for atrazine are summarized in Table 12 below. Please note that the occupational dermal and inhalation endpoints are the same as those used in the dietary drinking water assessment and in the residential risk assessment.

A dermal absorption factor of 6% (rounded up from 5.6%) was selected, based on a human study in which 10 volunteers were exposed to a single topical dose of atrazine. An inhalation absorption factor of 100% is applied. The FQPA Safety Factor is not applicable to the Occupational Risk Assessment.

Exposure Scenario	Dose (mg/kg/day)	UF ¹	Endpoint	Study
Dermal, Short-Term ^a	NOAEL= 6.25 LOAEL = 12.5	100	Delayed preputial separation in male offspring after 30 days of dosing. Use of the dermal penetration factor yields a dose of 104 mg/kg/day.	Pubertal assay (30- day) NHEERL published literature
Dermal, Intermediate- Term ^b	NOAEL= 1.8 LOAEL = 3.65	100	Attenuation of pre-ovulatory lutenizing hormone (LH) surge, as a biomarker indicative of hypothalamic function disruption	Six-month LH surge- Rat
Inhalation, Short-Term [°]	NOAEL= 6.25 LOAEL = 12.5	100	Delayed preputial separation in male offspring after 30 days of dosing.	Pubertal assay (30- day) NHEERL published literature
Inhalation, Intermediate- Term ^c	NOAEL= 1.8 LOAEL = 3.65	100	Attenuation of pre-ovulatory lutenizing hormone (LH) surge, as a biomarker indicative of hypothalamic function disruption	Six-month LH surge-Rat

 Table 12. Summary of Toxicological Endpoints and Other Factors Used in the

 Atrazine Occupational Risk Assessment

 ${}^{1}\text{UF}$ = Uncertainty Factor (100 is the result of a 10x for interspecies variability and 10x for intraspecies extrapolation)

a = The NOAEL of 6.25 mg/kg/day is multiplied by a 3.6 dermal penetration factor.

b = 6% dermal absorption factor for route-to-route extrapolation.

c=100% absorption factor for route-to-route extrapolation.

Atrazine has low acute dermal and inhalation toxicity. It is non-irritating to skin, minimally irritating to the eyes and is not a skin sensitizer. It is classified under Category III for acute oral toxicity. Table 13 summarizes the acute toxicity of atrazine.

Table 13.	Summary of	of Results from A	Acute Toxicity	Studies of	Technical Atrazine

Guideline No.	Test	Results	Toxic Category
81-1	Acute Oral LD ₅₀ - rat	$LD_{50} > 1,869 \text{ mg/kg} (M\&F \text{ combined})$	III
81-2	Acute Dermal LD ₅₀ - rat	$LD_{50} > 2,000 \text{ mg/kg} (M\&F \text{ combined})$	III

Guideline No.	Test	Results	Toxic Category
81-3	Acute Inhalation LC ₅₀ - rat	$LC_{50} > 5.8 \text{ mg/L} (M\&F \text{ combined})$	IV
81-4	Eye Irritation - rabbit	Non-irritant	IV
81-5	Dermal Irritation - rabbit	Non-irritant	IV
81-6	Dermal Sensitization	Non-sensitizer	

b. Occupational Exposure

Several chemical-specific studies that were submitted to the Agency by the technical registrant were used together were used to assess the occupational handler risks from use of atrazine for most exposure scenarios. Exposure studies submitted to the Agency by the Outdoor Residential Exposure Task Force (ORETF) were also used in the occupational (and non-occupational) risk assessments for applicators.

In addition, the Agency generated MOEs to assess risk to commercial handlers engaged in impregnating atrazine onto dry bulk fertilizer using dermal and inhalation unit exposure data from the *Pesticide Handlers Exposure Database* (PHED), Version 1.1 (August 1998). The PHED scenario for mixing/loading liquids using a closed system were used as a surrogate to estimate these exposures. However, such an exposure surrogate is less appropriate for estimating exposures due to transferring the treated dry bulk fertilizer from an auger truck to the application equipment. There are no data or reasonable surrogate available for this operation.

Three chemical-specific studies, one of dislodgeable foliar residue on corn, and two of transferable turf residues (TTR), were submitted to the Agency and used in the post-application occupational risk assessment. In addition, transfer coefficients used were based on data submitted by the Agricultural Reentry Task Force (ARTF), where possible. Most of the atrazine used in agriculture is applied to corn and sorghum early in the season, either before weeds emerge or when the crops are quite small, generally less than 12 inches high. This, and the degree of mechanization in cultivating these crops, leads the Agency to conclude that post-application exposure to workers is low.

Anticipated use patterns and application methods, range of application rates, and daily amounts treated were derived from current labeling. Maximum application rates specified on atrazine labels were 2.0 lb ai/A, with a few exceptions. Maximum label rates were used to estimate handler exposure. The Agency uses acres treated per day values that are thought to represent an eight-hour workday for a particular type of application equipment or a specific crop.

Occupational handler exposure assessments are conducted by the Agency using different levels of personal protection. The Agency typically evaluates all exposures with baseline protection and then adds additional protective measures using a tiered approach to obtain an appropriate MOE (i.e., going from minimal to maximum levels of protection). The lowest suite of personal protective equipment (PPE) is baseline PPE. If required (i.e., MOEs are less than 100), increasing levels of risk mitigation PPE are applied. If MOEs are still less than 100, engineering controls (EC) are applied. The levels of protection that formed the basis for calculations of exposure from atrazine activities include:

- Baseline: Long-sleeved shirt and long pants, shoes and socks (includes
- PPE: gloves for the applicator in scenario 5).
 Baseline + coveralls, chemical-resistant gloves, and a dust/mist respirator (see table for specifics by scenario)
- Engineering controls: Engineering controls, such as closed cab tractor for application scenarios, or a closed mixing and loading system such as a farm closed mechanical transfer system for liquids or a package based system. Some engineering controls are not feasible for certain scenarios. Some formulation types qualify as engineering controls for the purpose of controlling exposure during mixing and loading, such as water soluble packets.

c. Occupational Handler Risk Summary

Inhalation and dermal exposure to atrazine can result from occupational use. The Agency assessed dermal and inhalation risks (MOEs) for each crop currently registered for atrazine. For atrazine, occupational MOEs greater than 100 are not of risk concern to the Agency.

1) Agricultural Handler Risk

The Agency has determined that there is potential atrazine exposure to mixers, loaders, applicators, and other handlers using atrazine in accordance with the current use patterns. Fourteen major agricultural handler exposure scenarios were identified for atrazine, as listed below. The major handler scenarios involved multiple crops and application rates, resulting in several different exposure estimates. The largest agricultural use of atrazine involves the mixing, loading and application of atrazine to row crops and results in the largest potentially exposed occupational population.

- (1a) mixing/loading liquid formulations for aerial application,
- (1b) mixing/loading liquid formulations for groundboom application,
- (1c) mixing/loading liquid formulations for rights-of-way sprayer application to roadside,
- (1e) mixing/loading/incorporating liquid formulations into liquid and dry bulk fertilizer (commercial & on-farm techniques),
- (2a) mixing/loading dry flowable formulations for aerial application,
- (2b) mixing/loading dry flowable formulations for groundboom application,
- (2c) mixing/loading dry flowable formulations for rights-of-way sprayer application to roadside,
- (3) loading granular formulations,

- (4) applying liquids with aircraft,
- (5) applying liquids with groundboom sprayer,
- (6) applying liquids to roadsides with rights-of-way sprayer,
- (8) applying impregnated dry bulk fertilizer with a tractor-drawn spreader,
- (9) applying granular formulations with a tractor-drawn spreader,
- (15) flagging for aerial spray applications
- (16a) mixing/loading wettable powder formulations for aerial application; and
- (16b) mixing/loading wettable powder formulations for groundboom application.

PPE requirements on current atrazine labels are typically long-sleeved shirt, long pants, shoes, socks and waterproof gloves. Mixers and loaders must also wear protective eyewear. (mixers/loaders).

As summarized in Table 14, occupational risks are of concern (i.e MOEs < 100) for some scenarios even when maximum PPE are utilized. Handler risks are also of concern for a few scenarios with engineering controls. Engineering controls are considered to be the maximum feasible mitigation. These involve several scenarios for the incorporation of atrazine into liquid or dry bulk fertilizer, handlers mixing and loading wettable powders for application to 350 acres of sugarcane at 4 lb ai/A, and handlers applying liquids with a right of way sprayer to 40 acres of roadsides at 2 lb ai/A.

						Levels of	Protection		
		D 1		Base	eline	PI	PE ²	ECs	
Scenario	Crop/Use Site	Rate ¹	Acres	Short Term	Inter- mediate Term	Short Term	Inter- mediate Term	Short Term	Inter- mediate Term
			Ν	lixer/Loader					
(1a) Liquid formulations for	Conifer forests Christmas tree farms	4	350	2	0.4	248	61	520	130
aerial application	Sugarcane	4	250	2	0.4	248	61	520	130
		2.6	350	3	0.7	381	94	800	200
	Chemical fallow	3	1200	1	na	96	na	200	na
			350	2	0.6	330	82	690	170
		1.4	1200	1	na	206	na	430	na
			350	5	1.3	708	170	1500	370
	CRP or grasslands	2	1200	1	na	144	na	300	na
			350	4	0.9	495	120	1000	260
	Corn	2	1200	1	na	144	na	300	na
	Sorghum		350	4	0.9	495	120	1000	260
		1	1200	2	na	289	na	610	na
			350	7	2	991	240	2100	520
	Sod Farms	4 (FL)	350	2	0.4	248	61	520	130
		2	350	4	1	495	120	1000	260

 Table 14. Occupational Handler Aggregate (Dermal plus Inhalation) Margins of Exposure (PHED)

						Levels of 1	Protection		
		D 1		Base	eline	PF	\mathbf{PE}^2	E	Cs
Scenario	Crop/Use Site	Rate ¹	Acres	Short Term	Inter- mediate Term	Short Term	Inter- mediate Term	Short Term	Inter- mediate Term
(1b) Liquid formulations for groundboom	Macadamia nuts Guava Conifers	4	80	8	2	1084	270	2300	560
application	Sugarcane	4	80	8	2	1084	270	2300	560
		2.6	80	12	3	1667	410	3500	870
	Chemical Fallow	3	450	2	na	257	na	540	na
			200	4	1	578	140	1200	300
		1.4	450	4	na	550	na	1200	na
			200	9	2	1238	310	2600	640
	CRP or grasslands	2	450	3	na	385	na	810	na
			200	6	2	867	210	1800	450
	Corn	2	450	3	na	385	na	810	na
	Sorghum		200	6	2	867	210	1800	450
		1	450	6	na	771	na	1600	na
			200	12	3	1734	430	3600	900
	Roadsides	1	40	62	15	8669	2100	18,000	4500
		2		31	8	4335	1100	9100	2300
	Sod farms	4 (FL)	80	8	2	1084	270	2300	560
		2	80	16	4	2167	540	4600	1100

						Levels of 1	Protection		
				Base	eline	PF	PE ²	E	Cs
Scenario	Crop/Use Site	Rate ¹	Acres	Short Term	Inter- mediate Term	Short Term	Inter- mediate Term	Short Term	Inter- mediate Term
(1c) Liquid formulations for rights-of-way sprayer	Roadsides	1	40	62	15	8669	2100	18,000	4500
	Bermuda grass rights-of-way	2	40	31	8	4335	1100	9100	2300
(1e) Incorporating	Commercial fertilizer for corn,	2	960 tons	see engineerin	g controls			64	na
liquid sorghum (PHED data) formulations into		500 tons					120	36	
liquid or dry bulk fertilizer		1	960 tons					120	na
			500 tons					230	72
	Commercial fertilizer for corn,	2	500 tons	see engineering controls 170					67
	sorghum (Helix study data)	1		see engineerin	see engineering controls				130
	On-farm fertilizer for corn,	2	160	8	na	700	na	1900	na
	sorghum	1	160	15	na	1400	na	3800	na
(2a) Dry flowable for aerial	Conifer forests Christmas tree farms	4	350	66	16	105	26	380	130
application	Sugarcane	4	350	66	16	105	26	380	130
		2.6	350	100	25	161	40	580	140
	Chemical fallow	3	1200	26	na	41	na	150	na
			350	88	22	140	35	500	120
		1.4	1200	55	na	87	na	320	na
			350	190	47	300	74	1100	270
	CRP or grasslands	2	1200	38	na	61	na	220	na

						Levels of 1	Protection		
		_ 1		Base	Baseline		PE ²	ECs	
Scenario	Crop/Use Site	Rate ¹	Acres	Short Term	Inter- mediate Term	Short Term	Inter- mediate Term	Short Term	Inter- mediate Term
			350	130	33	210	52	750	190
	Corn	2	1200	38	na	61	na	220	na
	Sorghum		350	130	33	210	52	750	190
		1	1200	77	na	122	na	440	na
			350	260	65	420	100	1500	370
	Sod farms	4 (FL)	350	66	16	105	26	380	130
		2	350	130	33	210	52	750	190
(2b) Dry flowable for groundboom application	Macadamia nuts Guava Conifers	4	80	290	71	459	110	1600	410
	Sugarcane	4	80	290	71	459	110	1600	410
		2.6	80	440	110	706	170	2500	630
	Chemical fallow	3	450	68	na	109	na	400	na
			200	150	38	245	61	880	220
		1.4	450	150	na	233	na	840	na
			200	330	82	525	130	1900	470
	CRP or grasslands	2	450	100	na	163	na	580	na
			200	230	57	367	91	1300	330
	Corn	2	450	100	na	163	na	580	na
	Sorghum		200	230	57	367	91	1300	330

						Levels of	Protection		
				Base	eline	PI	PE^2	Е	Cs
Scenario	Crop/Use Site	Rate ¹	Acres	Short Term	Inter- mediate Term	Short Term	Inter- mediate Term	Short Term	Inter media Term
		1	450	210	na	326	na	1200	na
			200	460	110	734	180	2600	650
	Roadsides	1	40	2300	570	3672	910	13,000	3300
		2	40	1200	290	1836	450	6600	1600
	Sod farms	4(FL)	80	290	71	459	110	1600	410
		2	80	580	140	918	230	3300	820
(2c)Dry flowable	Roadsides	1	40	2300	570	3672	910	13,000	3300
for rights-of-way		2	40	1200	290	1836	450	6600	1600
(3) Granular formulations	Sod farms	2	80	1200	310	5023	1200	62,000	15,000
(16a) Wettable	Sugarcane	4	350	1.2	5.2	17	4.1	580	93
powders for aerial application		2.6		1.8	3	26	6.3	380	140
	Chemical Fallow	3	1200	0.5	na	6.5	na	150	na
		1.4		1	na	14	na	310	na
	Corn, Sorghum	2	1200	0.7	na	9.7	na	220	na
			350	2.4	4	33	8.2	750	190
		1	1200	1.4	na	19	na	440	na
			350	4.7	7	66	16	1500	370

Intermediate Term

					Levels of Protection				
<i>a</i> .		D 1		Baseline		PPE ²		ECs	
Scenario	Crop/Use Site	Rate ¹	Acres	Short Term	Inter- mediate Term	Short Term	Inter- mediate Term	Short Term	Inter- mediate Term
(16b) Wettable	Macadamia nuts	4	40	10	16	150	36	3300	820
powders for groundboom	Sugarcane	4	200	2.1	3	29	7.2	660	160
application	Sod farms (FL)	4	80	5.2	8	73	18	1600	410
				Applicator					-
(4) Applying liquids with	Conifer forests Christmas tree farms	4	350	See engineerin	ig controls	850	210		
aircraft	Sugarcane	4	350	See engineerin	g controls	850	210		
		2.6	35			1300	320		
	Chemical fallow	3	1200	See engineerin	g controls	330	na		
			350					1100	280
		1.4	1200					710	na
			350					2400	600
	CRP or grasslands	2	1200	See engineerin	ig controls			500	na
			350					1700	420
	Corn	2	1200	See engineerin	g controls			500	na
	Sorghum		350					1700	420
		1	1200					990	na
			350					3400	840
	Sod farms	4 (FL)	350	See engineerin	ig controls			850	210
		2	350					1700	420

				Levels of Protection							
		D 1	Acres	Base	Baseline		\mathbf{E}^2	ECs			
Scenario	Crop/Use Site	Rate ¹		Short Term	Inter- mediate Term	Short Term	Inter- mediate Term	Short Term	Inter- mediate Term		
(5) Applying liquids by groundboom ⁴	Macadamia nuts Guava Conifers	4	80	860	210	1690	420	4000	980		
	Sugarcane	4	80	860	210	1690	420	4000	980		
		2.6	80	1300	330	2600	640	6100	1500		
	Chemical fallow	3	450	200	na	401	99	940	na		
			200	460	110	901	220	2100	520		
		1.4	450	440	na	858	210	2000	na		
			200	990	240	1931	480	4500	1100		
	CRP or grasslands	2	450	310	na	601	150	1400	na		
			200	690	170	1352	330	3200	790		
	Corn	2	450	310	na	601	150	1400	na		
	Sorghum		200	690	170	1352	330	3200	790		
		1	450	610	na	1202	300	2800	na		
			200	1400	340	2704	670	6400	1600		
	Roadsides	2	40	3500	850	6759	1700	16,000	3900		
		1	40	6900	1700	13519	3300	32,000	7900		
	Sod farms	4(FL)	80	860	210	1690	420	4000	980		
		2	80	1700	430	3380	840	8000	2000		

				Levels of Protection						
~ .	a a a			Base	Baseline		\mathbf{PE}^2	E	Cs	
Scenario	Crop/Use Site	Rate ¹	Acres	Short Term	Inter- mediate Term	Short Term	Inter- mediate Term	Short Term	Inter- mediate Term	
(6) Applying	2.1.1	2	40	67	16	300	74	not feasible		
of way sprayer	ids with a right Roadsides ay sprayer	1	40	130	33	601	150	not feasible	_	
(8) Applying	Corn	2	320	190	na	660	na	1000	na	
impregnated fertilizer with a	Sorghum		160	380	na	1300	na	1900	na	
tractor-drawn spreader		1	320	380	na	1300	na	1900	na	
			160	900	na	2600	na	4000	na	
	On-farm fertilizer for corn,	2	200	610	150	2221	550	3200	790	
granular product with a tractor-	sorghum		80	1500	380	5553	1400	7900	2000	
drawn spreader		1	200	1200	300	4442	1100	6400	1600	
			80	3000	750	11,100	2700	16,000	4000	
				Flagger						
(15) Flagging sprays	Conifer forest Christmas tree farms	4	350	310	76	466	120	910	220	
	Sugarcane	4	350	310	76	466	120	910	220	
		2.6	350	480	120	717	180	1400	350	
Che	Chemical fallow	3	350	410	100	621	150	1200	300	
		1.4	350	880	220	1331	330	2600	640	
	CRP or grasslands	2	350	620	150	931	230	1800	450	
	Corn	2	350	620	150	931	230	1800	450	
	Sorghum	1	350	1200	310	1863	460	3600	900	

			Acres	Levels of Protection							
		D (1		Baseline		PPE ²		ECs			
Scenario	cenario Crop/Use Site	Rate ¹		Short Term	Inter- mediate Term	Short Term	Inter- mediate Term	Short Term	Inter- mediate Term		
	Sod farms	4 (FL)	350	310	76	466	120	910	220		
		2	350	620	150	931	230	1800	450		

lb ai/A or lb ai/gal

2

PPE Includes long-sleeved shirt and long pants, coveralls, chemical resistant gloves, and a respirator.

(16a) and (16b) are listed using minimum ppe (single layer, gloves, dust/mist respirator).

³ pounds of fertilizer treated per day ⁴ Sconerio #5 Applying Liquids by

Scenario #5, Applying Liquids by Groundboom: the baseline assessment includes gloves.

2) Lawn Care Operator Handler Risk

The Agency has determined that there is potential for atrazine exposure to Lawn Care Operators (LCOs) and other handlers mixing, loading and/or applying atrazine to turf in accordance with the current use pattern. Fifteen major exposure scenarios have been identified and are listed below.

- (1b) mixing/loading liquid formulations for groundboom application,
- (1d) mixing/loading liquid formulations for lawn handgun application (LCO),
- (2b) mixing/loading dry flowable for groundboom application,
- (3) loading granular formulations,
- (5) applying liquids with groundboom sprayer,
- (7) applying with a lawn handgun or compressed air sprayer,
- (9) applying granular formulations with a tractor-drawn spreader,
- (10) mixing/loading/applying with a backpack sprayer,
- (11) mixing/loading/applying liquid formulations with a low pressure handwand,
- (12a) mixing/loading/applying liquids with a lawn handgun or compressed air sprayer,
- (12b) mixing/loading/applying WDG formulations with a lawn handgun,
- (12c) mixing/loading/applying water soluble powder formulations with a lawn handgun,
- (13) loading/applying granular formulations with a push type spreader, and
- (14) loading/applying granular formulations with a bellygrinder.

The risk assessments for these scenarios are summarized in Table 15 below. With the use of PPE, all scenarios are acceptable.

Table 15. Lawn	Care Operator	• Margins of Exposure
----------------	----------------------	-----------------------

				Levels of Protection						
Scenario	Crop/ Use	Rate (lb	Acres	Baseline		PPE		ECs		
	Site	ai/A)		Short term	Inter- mediate term	Short term	Inter- mediate term	Short term	Inter- mediate term	
			Mixer	/Loader						
(1b) Liquid formulations for groundboom application	golf course turf	2	40	31	8	4335	1100	9100	2300	
(1d) Liquid formulations for lawn handgun application	lawn, golf courses	2	100	12	3	1734	430	3600	900	
(2b) Dry flowable for groundboom application	golf course turf	2	40	1200	290	1836	450	6600	1600	

					l	Levels of 1	Protection	n	
Scenario	Crop/ Use	Rate (lb	Acres	Base	eline	PI	PE	E	Cs
Scenario	Site	ai/A)	Acres	Short term	Inter- mediate term	Short term	Inter- mediate term	Short term	Inter- mediate term
(3) Granular formulations (loading)	golf course turf	2	40	2500	610	10,047	2500	120K	31,000
Mixer/Loader/Applicator									
(10) Liquid via backpack sprayer	lawns, golf courses	2	5	see PPE		428	110	not feasi	ble
(11) Liquid via low- pressure handwand	lawns, golf courses	2	5	7	2	1549	380	not feasi	ble
(12a) Liquid via lawn handgun and compressed air sprayer ¹	lawns, golf courses	2	5	see PPE 1400 340 gloves gloves		340 gloves	not feasible		
(12b) WDG via lawn handgun ¹	lawns, golf courses	2	5	see PPE		1100 gloves	290 gloves	not feasible	
(12c) WSP via lawn handgun ¹	lawns, golf courses	2	5	see PPE		920 gloves	230 gloves	not feasible	
(13) Granular via push type spreader (ORETF) ¹	lawns, golf courses	2	5	1500	380	2100 gloves	520 gloves	not feasible	
(14) Granular via belly grinder	lawns, golf courses	2	1	330	82	616	150	not feasi	ble
			App	licator					
(5) Applying liquids by groundboom	golf course turf	2	40	3500	850	6759	1700	16,000	3900
(7) Applying liquids with a handgun (ORETF) ¹	lawns, golf courses	2	5	see PPE 980 240 not feasi gloves gloves		ble			
(9) Applying granular formulations with a tractor-drawn spreader Footnote:	golf course turf	2	40	3000	750	11,100	2700	16,000	4000

PPE for scenarios 12(a), 12(b), 12(c), 13 and 7, include baseline (long-sleeved shirt, pants, shoes and

socks) plus gloves.

3) **Post-Application Occupational Risk**

Post-application exposure to workers through entry into agricultural fields treated with atrazine was also considered in the occupational risk assessment. These activities result in potential short-term exposures. All post-application risk estimates were below the Agency's level of concern. MOEs ranged from 100 to 220,000.

4) Epidemiology Data

An epidemiology study was conducted of workers at the Syngenta St. Gabriel plant where atrazine is manufactured. That study reported a statistically significant increase in the incidence of prostate cancer among plant workers. The Agency, upon review of this study, requested additional information on the exposure profile of the employees diagnosed with prostate cancer and this information was provided and reviewed. Based on this review, it appears that most of the increase in prostate cancer incidence at the St. Gabriel plant is likely due to intensive prostate specific antigen (PSA) screening of employees conducted as part of the company's "Wellness Program." The study was insufficiently large and has limitations that prevent ruling out atrazine as a potential contributor to the increase observed. On balance, however, a role for atrazine seems unlikely because prostate cancer was found primarily in active employees who received intensive PSA screening; there was no increase in advanced tumors or mortality; and proximity to atrazine manufacturing did not appear to be correlated with risk.

Atrazine has also been tied to inflammation of the prostate in laboratory animals and changes in testosterone levels at high doses. However, neither condition has been tied to the increased risk of prostate cancer and the Agency concludes the animal data do not provide biologically plausible evidence to support atrazine as a cause of prostate cancer.

Other cancers besides prostate were found to have an elevated, though not statistically significant, increase in risk at the St. Gabriel plant. Other studies have suggested an increased risk for ovarian, breast, and other cancers, including non-Hodgkin's lymphoma. However, these studies are at best preliminary and should not serve as a basis for implicating atrazine as a human carcinogen due to their methodological limitations.

In addition, the Agency understands that Syngenta will be conducting a case control study on male employees at the St. Gabriel plant to examine the relationship between atrazine exposure estimates and the presence or absence of prostate cancer among cases and controls. We expect to receive and review this study during the third quarter of 2003 and to incorporate the results into the October revision to the IRED.

Further, the National Cancer Institute's (NCI) preliminary analysis of the National Institute of Environmental Health Sciences (NIEHS) Agricultural Health Study has found no association between prostate cancer and atrazine in one of the largest and best-designed **US EPA ARCHIVE DOCUMENT**

epidemiological studies ever conducted. NCI expects to publish a final analysis this summer. The Agency will fully consider additional results from the NCI analysis when it becomes available.

B. Environmental Risk Assessment

A summary of the Agency's environmental risk assessment is presented below. For detailed discussions of all aspects of the environmental risk assessment, see the April 22, 2002, Reregistration Eligibility Science Chapter for Atrazine - Environmental Fate and Effects Chapter and the "Steeger Document" available in the public docket and on the internet at <u>www.epa.gov/pesticides/reregistration</u>. There were no major revisions to the ecological risk assessment.

1. Environmental Fate and Transport

Atrazine is mobile and persistent in the environment and, as such, atrazine is expected to be present in surface water and groundwater. This is confirmed by widespread detection in surface water and groundwater. The main route of dissipation is microbial degradation under aerobic conditions.

Atrazine can reach nearby non-target plants, soil, and surface water via spray drift during application. Atrazine is applied directly to target plants during foliar application or directly to soil during the more frequent pre-plant and pre-emergent applications. Atrazine can be transported indirectly to soil due to incomplete interception during foliar application and washoff subsequent to foliar application. Atrazine is unlikely to undergo rapid degradation on foliage because atrazine is resistant to abiotic hydrolysis (stable at pHs 5, 7, and 9), resistant to direct aqueous photolysis (stable under sunlight at pH 7), and is only moderately susceptible to degradation in soil (aerobic laboratory half-lives of 3-4 months). For aquatic environments reported half-lives were much longer. In an anaerobic aquatic study, atrazine's overall half-life, water half-life, and sediment half-life were given as 608, 578, and 330 days, respectively.

Atrazine is also unlikely to undergo rapid volatilization from foliage because it has a relatively low Henry's Law constant (2.6 X 10^{-9} atm·m³/mol). But this may be offset by atrazine's relatively low octanol/water coefficient (Log K_{ow} = 2 .7), and soil/water partitioning coefficients (Freundlich K_{ads} values < 3 and often < 1). In addition, atrazine has relatively low adsorption characteristics; this indicates that atrazine may undergo substantial washoff from foliage.

In terrestrial field dissipation studies performed in Georgia, California, and Minnesota, atrazine dissipated with half lives of 13, 58, and 261 days, respectively. The differences between these reported half-lives could be attributed to the temperature variation between the studies in which atrazine was seen to be more persistent in colder climate. Long term field dissipation studies also indicated that atrazine could persist over a year in such climatic conditions. A forestry field dissipation study in Oregon (aerial application of 4 lb ai/A) estimated an 87 day half-life for atrazine on exposed soil, a 13 day half-life in foliage, and a 66 day half-life on leaf

litter.

Atrazine metabolites, desethylatrazine (DEA) and desisopropylatrazine (DIA) were detected in all anaerobic aquatic metabolism studies submitted, and hydroxyatrazine and diaminochloroatrazine (DACT) were detected in all but one of the anaerobic aquatic metabolism studies submitted. Desethylhydoxyatrazine (DEHA) and desisopropylhydroxyatrazine (DIHA) were also detected in one of the aerobic studies. All of the chlorinated metabolites and hydroxy compounds detected in laboratory metabolism studies were present at much less than 10% of applied atrazine; thus, are not considered by the Agency to be "major degradates."

For studies limited to several months, the relative concentrations of the metabolites in soil were generally as follows: DEA>DIA>DACT~hydroxyatrazine. However, for an aerobic soil metabolism study and an anaerobic aquatic metabolism study both lasting a year, the concentration of hydroxyatrazine was comparable to that of DEA over the last few months of the studies. In addition, some literature indicates that higher quantities of hydroxyatrazine can be formed in soil and in sediment under acidic conditions. Other hydroxy compounds have only rarely been detected in lab studies.

The soil/water partitioning of atrazine, DEA, DIA, and DACT are relatively low as shown by Freundlich adsorption coefficients of < 3 and often < 1 for 4 different soils. The Freundlich adsorption constants for hydroxyatrazine are substantially greater, being approximately 2 for sand, but 6.5, 12.1, and 390 for a sandy loam, loam, and clay soil, respectively. No adsorption/desorption data are available for other hydroxy-triazine degradates. However, the higher soil/water partitioning exhibited by hydroxyatrazine compared to atrazine suggests that the other hydoxy-triazines are likely to exhibit higher soil/water partitioning than corresponding chloro-triazine degradates.

In a limited study on atrazine and its chlorodegradates in surface water source CWS, the detection of all was relatively widespread. However, atrazine predominated with the relative order of concentrations generally being as follows: atrazine>>DEA>DIA~DACT.

In a 1999 study of rural wells, the four hydroxy compounds were detected. Hydroxyatrazine was detected the most frequently and generally at the highest level, but not to the same extent as atrazine or the chlorinated metabolites. Unlike in surface water, where atrazine concentrations were generally much greater than chlorotriazine concentrations, the DEA and DACT concentrations in rural wells were often comparable to those of atrazine. The relative order of concentrations found in rural wells was generally atrazine~DEA~DACT>DIA>hydroxyatrazine .

The relatively widespread detection of atrazine and various chlorinated metabolites in the surface water study on metabolites and in the 1999 rural well study is consistent with the widespread use of atrazine, the persistence of atrazine and the mobility of atrazine and its chlorinated metabolites. The lower frequency of detection and generally lower levels of the hydroxyatrazine in the rural well study is consistent with its higher soil/water partitioning than atrazine and the chlorinated metabolites.

The available fate and ground water data indicate that hydroxy compounds are unlikely to significantly contaminate surface water. They are not appreciably formed in soil, and they are likely to exhibit higher soil/water partitioning than corresponding chlorinated metabolites. In addition, they were detected much less frequently and at much lower levels than the chlorinated metabolites in rural wells. However, hydroxyatrazine was detected at concentrations up to 6.5 ppb in 6% of rural wells sampled. Also, there have been reported concentrations of hydroxyatrazine in soil sometimes approaching and possibly in some cases (e.g., acidic soils) exceeding that of DEA.

Atrazine should be somewhat persistent in groundwater and in surface water with relatively long hydrologic residence times where advective transport is limited. The reasons for this are the resistence of atrazine to abiotic hydrolysis and to direct aqueous photolysis, its only moderately susceptibility to biodegradation, and its limited volatilization potential as indicated by a relatively low Henry's Law constant. Atrazine has been observed to remain at elevated concentrations longer in some reservoirs than in flowing surface water or in other reservoirs with presumably much shorter hydrologic residence times in which advective transport greatly limits its persistence.

The relatively low soil/water partitioning of atrazine and chlorinated metabolites indicates that their concentrations in or on suspended and bottom sediment will be in equilibrium with the residues in the water column. However, despite relatively low soil/water partitioning, limited data indicated that activated carbon can be effective in reducing atrazine and its triazine metabolite concentrations by several fold, depending upon the frequency and conditions of its use.

Volatility as a route of field dissipation raises concerns about the atmospheric fate of atrazine, its aerial transport and whether aerial deposition poses the potential for risks to non-target terrestrial plants. The potential for adverse effects on sensitive, non-target crops and plants from atmospheric deposition is uncertain. Atrazine has been widely detected in rainfall, with the highest concentrations occurring in the Midwestern corn belt during the application season (mid-April through mid- July). In addition, DEA and DIA were also detected in rainfall together with atrazine. High ratios of DEA to atrazine were attributed to atmospheric degradation. Mass deposition of atrazine and its metabolites is higher in the midwestern corn belt, and decreases with distance away from the corn belt.

2. Risk to Terrestrial Organisms

The Agency's ecological risk assessment compares toxicity endpoints from ecological studies to estimated environmental concentrations (EECs) based on environmental fate characteristics and pesticide use data. To evaluate the potential risk to non-target organisms from the use of atrazine products, the Agency calculates a Risk Quotient (RQ) by determining the ratio of the EEC to the toxicity endpoint values, such as the median lethal dose (LD50) or the median lethal concentration (LC50). These RQ values are then compared to the Agency's levels of concern (LOCs) to determine whether or not a chemical, when used as directed, has the potential to cause adverse effects to non-target organisms. In general, the higher the RQ, the

greater the concern. When the RQ exceeds the LOC for a particular category (e.g., endangered species), the Agency presumes a risk of concern to that category of non-target organisms. The LOCs and the corresponding risk presumptions are presented in Table 16.

If	Then the Agency presumes
Birds and Mammals	
Acute RQ > LOC of 0.5	acute risk
Acute RQ > LOC of 0.2	risk that may be mitigated through restricted use classification
Endangered Species Acute RQ > LOC of 0.1	acute effects may occur in endangered species
Chronic RQ > LOC of 1	chronic risk and chronic effects may occur in non-target organisms
Aquatic Animals	
Acute RQ > LOC of 0.5	acute risk
Acute RQ > LOC of 0.1	risk that may be mitigated through restricted use classification
Endangered Species Acute RQ > LOC of 0.05	acute effects may occur in endangered species
Chronic RQ > LOC of 1	chronic risk and chronic effects may occur in non-target organisms
Terrestrial and Semi-Aquatic Pl	ants
Acute RQ > LOC of 1	acute risk
Acute RQ > LOC of 1	risk that may be mitigated through restricted use classification
Endangered Species Acute RQ > LOC of 1	acute effects may occur in endangered species
Chronic RQ > LOC of 1	chronic risk and chronic effects may occur in non-target organisms

a. Toxicity (Hazard) Assessment

Atrazine is practically non-toxic to slightly toxic to birds and mammals, and relatively non-toxic to honey bees.

As expected for a herbicide, atrazine is toxic to non-target plants. Terrestrial plant seedling germination tests indicate that cucumber is the most sensitive dicot and oats is the most sensitive monocot. Terrestrial plant seedling emergence tests indicate that the dicot most sensitive to atrazine is carrot, and the monocots most sensitive to atrazine are oats and ryegrass. Terrestrial plant vegetative vigor tests indicate that the most sensitive dicot is cucumber and the most sensitive monocot is onion.

The acute and chronic toxicity values used to assess risks are presented in Tables 17 and 18 below.

		Acute To	xicity (ppm	Chron	ic Toxicity (ppm)		
Species	LD ₅₀	Acute Oral Toxicity	5-day LD ₅₀	Subacute Dietary Toxicity	NOAEC/ LOAEC	Affected Endpoints	
Atrazine							
Northern bobwhite quail Colinus virginianus	940	slightly toxic	>5,000	practically non-toxic	225/675	decreased egg production, increase in defective eggs, decreased embryo viability, decreased body weight	
Honey bee Apis meliferus	96.69	relatively non-toxic					
Laboratory rat (mg/kg)	1,869 - 3,080	practicall y non- toxic			50	See health effects endpoints	

Table 18. Summary of Toxicity Data for Non-Target Terrestrial Plants

Georgies	Seedling Germination Toxicity		Seedling Emergence Toxicity		Vegetative Vigor Toxicity	
Species	EC25/ EC05	Endpoint	EC25/ NOAEC	Endpoint	EC25/ NOAEC	Endpoint
Monocots						
Oat - Avena sativa	1.8/0.12	reduction in radical length	0.0004/ 0.0025	reduction in dry wt.	2.4/2.0	reduction in dry wt.
Onion - <i>Allium cepa</i>	<4.0/<4.0	no effect	0.009/ 0.005	reduction in dry wt.	0.61/0.5	reduction in dry wt.
Dicots						
Carrot - Daucus carota	<4.0/<4.0	no effect	0.003/ 0.0025	reduction in dry wt.	1.7/2.0	reduction in plant height
Cucumber - Cucumis sativus	0.80/0.60	reduction in radical length	0.013/ 0.005	reduction in dry wt.	0.008/ 0.005	reduction in dry weight

b. Exposure and Risk - Birds and Mammals

The Agency's acute ecological risk assessment for terrestrial wildlife considers exposure to atrazine from the ingestion of residues on food. Terrestrial EECs were derived for the three major crops using the maximum labeled use rates (4 lb ai/A for sugarcane and 2 lb ai/A for corn and sorghum) and the highest value measured for foliar dissipation half-life from the application of atrazine to turf in the Southeastern United States: 17 days. Since foliar dissipation half-lives are used in estimating these EECs, the EECs better represent post-emergent applications than pre-plant and pre-emergence applications made directly to soil.

No acute LOCs are exceeded for mammals; however, in some scenarios, restricted use and endangered species LOCs are exceeded. RQ values for small mammals are cited in the table below. Acute endangered species LOCs are exceeded for small herbivorous mammals (RQ range: 0.0092 - 0.13) at 1.1 and 1.2 lb ai/A. All acute avian RQs are significantly below all LOCs indicating that there is negligible potential for acute risks to birds

The chronic LOC is exceeded for birds (RQ range: 0.08 - 4.3) and mammals (RQ range: 1.6 - 96) suggesting the potential for chronic risks to mammals and birds from atrazine applied at typical and maximum use rates.

It is important to consider that exposure of birds and mammals to atrazine applied as a pre-plant or pre-emergent herbicide is primarily a result of ingestion of earthworms and other soil organisms that can serve as a food source and inadvertent ingestion of soil. Methods are not available to determine the levels of atrazine that could occur in soil and in earthworms and other soil organisms that are used as food sources by birds and mammals. The resulting levels of atrazine in soil and soil organisms that can serve as a source of food for birds and mammals are expected to be considerably lower than estimated levels in plants used as food sources. As such, risk quotients based on EECs from maximum foliar dissipation half-life data, as presented in this document, are over-estimates for birds and mammals that are exposed from ingestion of soil organisms.

The primary effects of concern for herbicides and wildlife are indirect.

Table 19. Acute and Chronic H	isk Quotients for	Terrestrial Organisms
-------------------------------	-------------------	------------------------------

Organism	Size of Organism (grams)	Range of EEC (ppm)	Acute RQ	Subacute Dietary RQ	Chronic RQ (Repro)			
Sugarcane: 1 Preplant Aerial Application 4 lb ai/A (maximum labeled use rate)								
Mammalian Herbivores	15	60 - 960	0.031 - 0.49		1.2 - 19.2			
Mammalian Insectivores	15	60 - 540	0.031 - 0.27					
Mammalian Granivores	15	60	0.0067					

Organism	Organism Size of Organism (grams)		Acute RQ	Subacute Dietary RQ	Chronic RQ (Repro)
Avian Species		60 - 960		<0.012 - <0.19	0.27 - 4.3
Sugarcane: 1 Preplant A	erial Application	on 2.6 lb ai/A (typi	cal use rate)		
Mammalian Herbivores	15	39 - 624	0.020 - 0.32	_	0.78 - 12.48
Mammalian Insectivores	15	39 - 151	0.020 - 0.08		
Mammalian Granivores	15	39	0.0044		
Avian Species		39 - 624		<0.0078 - <0.12	0.17 - 2.8
Corn and Sorghum: 1 Pr	eplant Aerial A	Application at 2.0 lb	o ai/A (maximum l	abeled rate)	
Mammalian Herbivores	15	30 - 480	0.015 - 0.24		0.6 - 9.6
Mammalian Insectivores	15	30 - 270	0.015 - 0.14		
Mammalian Granivores	15	30	0.34		
Avian Species		30 - 480		<0.0060 - <0.096	0.13 - 2.1
Corn: 1 Preplant Aerial	Application at	1.1 lb ai/A (typical	use rate)		
Mammalian Herbivores	15	16.5 - 264	0.0084 - 0.13		0.3 - 5.28
Mammalian Insectivores	15	16.5 - 148.5	0.0084 - 0.075		
Mammalian Granivores	15	16.5	0.0019		
Avian Species		16.5 - 264		<0.0033 - <0.053	0.73 - 1.2

Table 19. Acute and Chronic Risk Quotients for Terrestrial Organisms

Organism	Size of Organism (grams)	Range of EEC (ppm)	Acute RQ	Subacute Dietary RQ	Chronic RQ (Repro)				
Sorghum: 1 Preplant Aer	Sorghum: 1 Preplant Aerial Application at 1.2 lb ai/A (typical use rate)								
Mammalian Herbivores	15	18 -288	0.0092 - 0.15		0.36 - 5.76				
Mammalian Insectivores	15	18 - 162	0.0092 - 0.082						
Mammalian Granivores	15	18	0.0020						
Avian Species		18 - 288		<0.0036 - <0.058	0.08 - 1.1				

 Table 19. Acute and Chronic Risk Quotients for Terrestrial Organisms

c. Exposure and Risk - Terrestrial Plants

Atrazine applications to crop and non-crop areas result in exposure to non-target plants in areas adjacent to treated fields via spray drift and/or runoff. The Agency's assessment compares standard residue values for runoff and drift for exposure and compares these exposure values to toxicity data available for non-target species. Spray drift levels for ground and aerial applications are 1 and 5 percent, respectively. Atrazine is highly mobile in soils and has a low soil-water partitioning coefficient and a water solubility value of about 33 ppm. Its runoff is estimated at 2 percent. The scenario for plants growing in dry areas receive runoff from 1 hectare to 1 hectare, while a 1-hectare wet area receives runoff from 10 hectares. All plant toxicity values are present as pounds active ingredient per acre (lbs ai/A). The EC25 values are used to calculate risk quotients for the typical non-target plants and the NOAEC values are used for endangered and threatened plant species. Although the Agency currently only has data on crop species, the results are assumed to represent a range of wild plants. The assessment assumes that terrestrial plants living in wetter habitats are at greater risk because they are exposed to runoff more than drier areas. The assessment resulted in exceedences for ground and aerial applications of atrazine at typical and maximum labeled rates. RQs based on the maximum labeled use rate are presented in Table 20 below.

RQs from three test species exceed the typical plant LOC from spray drift alone (cucumber, soybeans, and cabbage), 8 test species (in dry areas) or 9 test species (in wetter areas) exceeded the LOC from spray drift plus runoff. Both monocot and dicot species have exceeded the level of concern.

Endangered species exceedences for direct effects on terrestrial plants indicate potential risks to endangered species. RQs from 9 test species exceeded the endangered species LOC from spray drift alone or from spray drift plus runoff. The level of concern for endangered terrestrial plant species is exceeded for both monocots and dicots. These results indicate concern for endangered plant species growing in areas adjacent to atrazine-treated fields from combined spray drift and runoff.

A ground application of 2 lbs ai/A poses a diminished risk to adjacent crops compared to 4 lb ai/A applications, but only one of these species (i.e., soybeans from spray drift) would no longer exceed the acute level of concern. At the typical corn use rate of 1.1 lbs ai/A, the non-target crops at risk are cucumbers from spray drift, 7 out of 9 non-target species growing in dry habitats, and all 9 non-target species, if grown in semi-aquatic habitats. Risk quotients for endangered plant species indicate concern for endangered species growing in areas adjacent to atrazine-treated fields from combined spray drift and runoff.

		4 lbs ai./A; Aerial Application						4 lbs ai./A; Ground Application				
Сгор	Spray Drift (5%)		Sp	oray Drif	t + Run	off		v Drift %)	Sp	oray Drif	ft + Run	off
	T	TECI	Dry .	Areas	Wet .	Areas	T	EG	Dry A	Areas	Wet 2	Areas
	Тур	ES ¹	Тур	ES	Тур	ES	Тур	ES	Тур	ES	Тур	ES
Carrot	0.12	0.10	83	99	230	270	0.024	0.02	40	48	280	340
Oats	0.083	0.10	62	99	170	270	0.017	0.02	30	48	210	340
Ryegrass	< 0.05	< 0.05	62	50	170	140	< 0.01	< 0.01	30	24	210	170
Lettuce	0.61	0.80	50	50	140	140	0.12	0.16	24	24	170	170
Onion	0.33	0.40	28	50	76	140	0.066	0.08	13	24	93	170
Cucumber	25	40	19	50	52	140	5.0	8.0	9.2	24	65	170
Soybean	7.7	10	1.3	9.9	3.5	27	1.5	2.0	0.63	4.8	4.4	34
Cabbage	14	40	18	25	49	68	2.9	8.0	8.6	12	60	84
Tomato	0.28	0.40	7.3	25	20	68	0.056	0.08	3.5	12	25	84
Corn	< 0.05	< 0.05	< 0.06	<0.06	< 0.17	< 0.17	< 0.01	< 0.01	< 0.03	< 0.03	<0.21	<0.21

 Table 20. Risk Quotients for Terrestrial Plants

1 ES - Endangered Species; Typ. - Typical Species

3. Risk to Aquatic Species

To assess the risks to aquatic plants and animals from the use of atrazine, the Agency first conducted a screening-level RQ assessment similar to that described above for terrestrial organisms. This screening-level assessment was conducted only for freshwater species. The Agency also conducted a refined assessment to further evaluate the potential risks to aquatic organisms and local communities and populations. Estuarine and saltwater species were assessed as part of the refined assessment.

a. Toxicity (Hazard) Assessment

Atrazine is slightly to moderately toxic to freshwater fish and slightly to highly toxic to

freshwater invertebrates. Atrazine is slightly to moderately toxic to estuarine/marine fish and slightly to very highly toxic to estuarine/marine invertebrates. Tables 21 and 22 summarizes the endpoints used in the screening-level risk assessment of aquatic animals and plants.

	Acute	Toxicity (ppb)	Chronic Toxicity (ppb)		
Species	96-hr LC ₅₀	Acute Toxicity	NOAEC/ LOAEC	Affected Endpoints	
Freshwater Fish					
Rainbow trout - Oncorhynchus mykiss	5,300	moderately toxic			
Brook trout - Salvelinus tontinalis	6,300	moderately toxic	65/120	reduced mean length, mean body weight	
Freshwater Invertebrates					
Midge - Chironomus tentans	720	highly toxic	110/230	reduction in pupation and adult emergence	
Scud - Gammarus fasciatus	5700	moderately toxic	60/140	reduction in development	
Mysid shrimp - Americamysis bahia	1000	highly toxic	80/190	reduction in adult	
	5400	moderately toxic		survival	

Table 22. Summary of Toxicity Data for Non-Target Aquatic Plants

		t Term Exposure 0 days or less)	Longer Term Exposure (>10 days)				
Species	Concen- tration Response (ppb)		Concen- tration (ppb)	Response			
Freshwater Vascular Plants							
Duckweed - <i>Lemna gibba</i>	170	50% reduction in growth	37	50% reductio in growth (LOAEC = 3.4, 19% reduction in growth; NOAEC < 3.4)			
			43	50% reduction in growth (NOAEC = 10)			
Freshwater Non-Vascular Plants							
Chlorophyceae - Kirchneria subcapitata (Selenastrum capricornutum)	49	50% reduction in cell growth (NOAEC = 16)					

b. Exposure and Risk

For the screening-level assessment, to assess potential risk to aquatic animals and plants in ponds, the Agency uses a computer model to predict the EECs of atrazine in water. Peak EECs are compared to acute toxicity endpoints to derive acute RQs. Normally, chronic RQs are derived using 96-hour and 21- to 90-day EECs, corresponding to the duration of the test. For atrazine, 21-day EECs were generally used for chronic exposures, because the difference in EEC values is small. To estimate chronic risk to fish, both 21-day and 90-day EECs were used. EECs are presented in Table 23 below. Calculated RQs of concern are summarized below and presented in Table 23.

	U. D. (Atrazine EEC Values ppb (µg/L)						
Сгор	Use Rates (lb ai/A)	Peak Conc.	96-hour Average	21-day Average	60-day Average	90-day Average		
Sugarcane	4.0	205	204	202	198	194		
	2.6	133	133	131	129	126		
Corn	2.0	38.2	38.0	37.2	35.5	34.2		
	1.1	21.0	20.9	20.5	17.7	18.8		
Sorghum	2.0	72.7	72.3	70.6	67.7	65.9		
	1.2	43.6	43.4	42.4	40.6	39.5		

 Table 23. EECs Used in the Atrazine Aquatic Risk Assessment for Ponds

For the sugarcane scenarios, atrazine applied at either the 2.6 lbs/ai/A or 4.0 lbs ai/A rate exceeds the levels of concern for acute toxicity to aquatic plants, restricted use for aquatic invertebrates, and endangered species for aquatic invertebrates and aquatic vascular plants. In addition, the chronic LOC is exceeded for aquatic plants, fish and aquatic invertebrates resulting from both the maximum use rate and the typical use rate for sugarcane.

For the 2.0 lb rate corn scenario, atrazine exceeds the levels of concern for acute toxicity for aquatic plants and for endangered species for aquatic invertebrates and aquatic vascular plants. The acute RQs for freshwater fish, and the chronic RQs for freshwater fish and aquatic invertebrates do not exceed levels of concern. For the 1.1 lb. rate corn scenario, atrazine exceeds the LOC for endangered species for aquatic vascular plants. The remaining calculated RQs do not exceed levels of concern.

For the 2.0 lb rate sorghum scenario, atrazine exceeds the LOC for acute toxicity for aquatic plants, restricted use for aquatic invertebrates, endangered species for aquatic invertebrates, and aquatic vascular plant species. The levels of concern for chronic effects are exceeded by chronic RQs for aquatic plants, fish and aquatic invertebrates. For the 1.2 lb. Rate sorghum scenario, atrazine exceeds the LOC for acute toxicity for vascular plants, endangered species for aquatic invertebrates, and endangered species for aquatic vascular plants. The acute and chronic RQs for freshwater fish and aquatic invertebrates do not exceed levels of concern.

	A	cute	Chronic							
Organism	EEC RQ		EEC (ppb)	RQ						
Sugarcane: 1 Preplant Aerial App	lication at 4.0 lb a	i/A								
Freshwater Fish	205	0.039	194 - 202	2.9 - 3.1						
Aquatic Invertebrate		0.28	202	3.4						
Freshwater Vascular Plant		5.5								
Freshwater Vascular Plant (NOEC)*		>60.3								
Freshwater Algae		4.2								
Sugarcane: 1 Preplant Aerial App	Sugarcane: 1 Preplant Aerial Appliation at 2.6 lb ai/A									
Freshwater Fish	133	0.025	126 - 133	1.9 - 2.0						
Aquatic Invertebrate		0.18	131	2.2						
Freshwater Vascular Plant		3.6								
Freshwater Vascular Plant (NOEC)*		>39.1								
Freshwater Algae		2.7								
Corn: 1 Preplant Aerial Application	on at 2.0 lb ai/A	-	-							
Freshwater Fish	38.2	0.0072	34.2 - 37.2	0.53 - 0.58						
Aquatic Invertebrate	38.2	0.053	37.2	0.63						
Freshwater Vascular Plant	37.2	1.0								
Freshwater Vascular Plant (NOEC)*	37.2	>11								
Freshwater Algae	38.2	0.78								
Corn: 1 Preplant Aerial Application	Corn: 1 Preplant Aerial Application at 1.1 lb ai/A									
Freshwater Fish	21.0	0.0040	18.8 - 20.5	0.29 - 0.32						
Aquatic Invertebrate	21.0	0.029	20.5	0.34						
Freshwater Vascular Plant	20.5	0.56								
Freshwater Vascular Plant (NOEC)*	20.5	>6.0								

Table 24. Acute and Chronic Risk Quotients for Freshwater Aquatic Species

	Ac	cute	Chr	onic						
Organism	EEC (ppb)	RQ	EEC (ppb)	RQ						
Freshwater Algae	21.0	0.43								
Sorghum: 1 Preplant Aerial Application at 2.0 lb ai/A										
Freshwater Fish	72.7	0.014	65.9 - 70.6	1.0 - 1.1						
Aquatic Invertebrate	72.7	0.10	70.6	1.2						
Freshwater Vascular Plant	72.7	2.0								
Freshwater Vascular Plant (NOEC)*	72.7	>21								
Freshwater Algae	72.7	1.5								
Sorghum: 1 Preplant Aerial Appli	cation at 1.2 lb ai/	A								
Freshwater Fish	43.6	0.0082	39.5 - 42.4	0.61 - 0.65						
Aquatic Invertebrate	43.6	0.061	42.4	0.71						
Freshwater Vascular Plant	43.6	1.2								
Freshwater Vascular Plant (NOEC)*	43.6	>13								
Freshwater Algae	43.6	0.89								

Table 24. Acute and Chronic Risk Quotients for Freshwater Aquatic Species

* Endangered species RQ calculation

In addition to the risks described above, indirect effects on fish and aquatic invertebrates may be severe due to the loss of up to 60 to 95 percent of the vegetative cover, which provides habitat to conceal young fish and aquatic invertebrates from predators. Numerous studies have described atrazine's ability to inhibit photosynthesis, change community structure, and cause the mortality of aquatic flora at concentrations between 20 and 500 ppm.

5. Refined Aquatic Assessment

The refined atrazine aquatic risk assessment focuses on aquatic plants and invertebrates and the potential for effects on sensitive plant species to result in community-level impacts that affect a range of aquatic organisms. The assessment is broken down by the type of water body (i.e., small static fresh water bodies such as ponds, flowing fresh water such as streams and rivers, larger bodies of fresh water such as lakes and reservoirs, and estuarine and marine habitats). Exposure for these three types of aquatic environments was estimated using PRZM-EXAMS modeling simulations (ponds) and monitoring data (streams, lakes and reservoirs, and estuarine/marine environments - refined aquatic assessment). The April 22, 2002, Environmental Fate and Effects Chapter presents figures that plot atrazine concentrations against exceedence probabilities to illustrate the effects that are likely or estimated to occur in these aquatic environments.

The Agency's refined aquatic risk assessment is based on ecotoxicological data, microcosm and mesocosm studies, and the monitoring data described above. A large number of laboratory, microcosm, mesocosm, and actual field studies found in the literature suggest that atrazine concentrations measured in the environment could reach levels that are likely to have negative impact on sensitive aquatic species and communities.

Tables 25, 26 and 27 summarize the toxicological endpoints used in the refined risk assessment.

Enderster franklige i statis Enderster Enderster Enderster ender som det statis

Table 25. Key Endpoints for the Lentic Freshwater Environment (e.g., reservoirs, lakes).							
The Endpoints Chosen for Use in the Refined Risk Assessment are Bolded.							
Key Group of	Type of Study	Measurement Endpoint	Test Organisms /	Assessment Endpoint			

Key Group of Non-target Organisms	Type of Study	Measurement Endpoint	Test Organisms / Effect	Assessment Endpoint
Fish	Lab	Acute Fish (96-hours) LC50 = 5,300 μg/L	Rainbow trout / Mortality	Fish Mortality Estimated to Occur at 5,300 µg/L
	Lab	Chronic Fish (44-weeks) NOAEC = 65 μ g/L; LOAEC= 120 μ g/L; MATC= 88 μ g/L	Brook trout / [7.2 % red. mean length, 16 % red. mean body weight]	Reduction in Fish Growth Estimated to Occur at 88 μg/L
	Distribution of Lab Data	10^{th} centile value = 62 μ g/L	Freshwater Aquatic Animal Chronic Data	Fish Population Reductions Estimated to Occur at 62 μg/L
	Field (mesocosms)	96% Reduction in # of Young Fish Occurred at 20 μg/L (Caused by Loss of Food and Habitat)	Bluegill sunfish	Fish Populations Likely to be Reduced at 20 μg/L due to Loss of Food and Habitat
Invertebrates	Lab	Acute Invertebrate (48-hour) $LC_{50} = 720 \ \mu g/L$	Midge / Mortality	Invertebrate Mortality Estimated to Occur at 720 μg/L
	Lab	Chronic Invertebrate (48-hour) NOAEC = 60 μ g/L; LOAEC= 140 μ g/L; MATC= 92 μ g/L	Scud / [25 % red. in development of F ₁ to seventh instar]	Reduction in Invertebrate Populations Estimated to Occur at 92 μg/L
	Distribution of Lab Data	10^{th} centile value = $62 \ \mu \text{g/L}$	Freshwater Aquatic Animal Chronic Data	Reduction in Invertebrate Populations Estimated to Occur at 62 μg/L
	Field	59-65% Reduction in Daphnid population growth occurred at 10 μg/L over 18-days	Daphnids	Invertebrate Populations Likely to be Reduced at 10 μ g/L
Non-Vascular Plants	Lab	Acute Algae (1-week) $EC_{50} = 1$ $\mu g/L$	Four species [41-93% reduction in chlorophyll production]	Reduction in Primary Production Estimated to Occur at 1 µg/L

Key Group of Non-target Organisms	Type of Study	Measurement Endpoint	Test Organisms / Effect	Assessment Endpoint
	Distribution of Lab Data	10^{th} centile value = 32 μ g/L for acute effects on phytoplankton, and 2.3 μ g/L for chronic effects on plants	Freshwater Aquatic Plant Data	Acute Effects on Phytoplankton Estimated at 32 µg/L and Reductions in Primary Production Estimated to Occur at 2.3 µg/L
	Microcosm	23% Reduction in gross primary production 10 μ g/L (at day 2); recovery by day 7	phytoplankton	Reduction in Primary Production Estimated to Occur at 10 µg/L
	Field	42% Reduction in phytoplankton biomass (at days 2-7) occurred at 20 μg/L	phytoplankton	Reduction in Primary Production Likely to Occur at 20 µg/L
Vascular Plants	Lab	Acute (14-days) $EC_{50} = 37 \ \mu g/L$	Duckweed [50% reduction in growth]	Reduction in Macrophytes Estimated to Occur at 37 µg/L
	Distribution of Data	10 th centile value = 18 μ g/L for acute effects on macrophytes, and 2.3 μ g/L for chronic effects on plants	Freshwater Aquatic Plant Data	Acute Effects on Macrophytes Estimated at 18 µg/L and Reductions in Macrophyte Populations Estimated to Occur at 2.3 µg/L
	Mesocosm	60% Reduction of macrophyte vegetation occurred at 20 μg/L; by May of following year, 95% Reduction of macrophytes	Macrophytes	Reduction in Macrophytes (number & diversity) Likely to Occur at 20 µg/L

Table 26. Key Endpoints for the Lotic Freshwater Environment (e.g., streams). TheEndpoints Chosen for Use in the Refined Risk Assessment are Bolded.

Key Group of Non-target Organisms	Type of Study	Measurement Endpoint	Test Organisms / Effect	Assessment Endpoint
Fish	Lab	Acute Fish (96-hours) LC50 = 5,300 μg/L	Rainbow trout / Mortality	Fish Mortality Estimated to Occur at $5,300 \ \mu g/L$
	Lab	Chronic Fish (44-weeks) NOAEC = 65 μ g/L; LOAEC= 120 μ g/L; MATC= 88 μ g/L	Brook trout / [7.2 % red. mean length, 16 % red. mean body weight]	Reduction in Fish Growth Estimated to Occur at 88 µg/L
	Distribution of Lab Data	10^{th} centile value = 62 μ g/L	Freshwater Aquatic Animal Chronic Data	Fish Population Reductions Estimated to Occur at 62 μg/L
Invertebrates	Lab	Acute Invertebrate (48-hour) $LC_{50} = 720 \ \mu g/L$	Midge / Mortality	Invertebrate Mortality Estimated to Occur at 720 µg/L
	Lab	Chronic Invertebrate (48-hour) NOAEC = 60 μ g/L; LOAEC= 140 μ g/L; MATC= 92 μ g/L	Scud / [25 % red. in development of F ₁ to seventh instar]	Reduction in Invertebrate Populations Estimated to Occur at 92 μg/L
	Distribution of Lab Data	$10^{\rm th}$ centile value = 62 μ g/L	Freshwater Aquatic Animal Chronic Data	Invertebrate Population Reductions Estimated to Occur at 62 μ g/L

Key Group of Non-target Organisms	Type of Study	Measurement Endpoint	Test Organisms / Effect	Assessment Endpoint
	Outdoor Stream	Significant Increase in daytime and nighttime invertebrate drift occurred at 22 µg/L due to increased predation	various species of stream dwelling invertebrates	Invertebrate Populations Likely to be Reduced at 22 µg/L
Non-Vascular Plants	Lab	Acute Algae (1-week) $EC_{50} = 1$ $\mu g/L$	Four species [41-93% reduction in chlorophyll production]	Reduction in Primary Production Estimated to Occur at 1 µg/L
	Distribution of Lab Data	10^{th} centile value = $32 \ \mu \text{g/L}$ for acute effects on phytoplankton, and 2.3 $\ \mu \text{g/L}$ for chronic effects on plants	Freshwater Aquatic Plant Data	Acute Effects on Phytoplankton Estimated at 32 μ g/L and reductions in primary production estimated to occur at 2.3 μ g/L
	Stream (first order adjacent to corn field in Canada)	79% (mean) Reduction in Total Phytoplankton Counts at 2.62 μg/L (mean; range = 0.211 - 13.9)	phytoplankton	Reduction in Primary Production Likely to Occur at 2.62 (0.211 - 13.9) µg/L
	Outdoor Artificial Streams	Depression of Photosynthesis at $10 \ \mu g/L$	Various species of stream algae. Photosynthesis reduction measured by open water oxygen methods.	Reduction in Primary Production Likely to Occur at 10 µg/L
Vascular Plants	Lab	Acute (14-days) $EC_{50} = 37 \ \mu g/L$	Duckweed [50% reduction in growth]	Reduction in Macrophytes Estimated to Occur at 37 µg/L
	Distribution of Lab Data	10^{th} centile value = 18 μ g/L for acute effects on macrophytes, and 2.3 μ g/L for chronic effects on plants	Freshwater Aquatic Plant Data	Acute Effects on Macrophytes Estimated at 18 μ g/L and Reductions in Macrophytes Estimated to Occur at 2.3 μ g/L

Table 27. Key Endpoints for the Estuarine/Marine Environment (e.g., estuaries, tidal ,marshes). Endpoints Chosen for Use in the Refined Risk Assessment are Bolded.

Key Group of Non-target Organisms	Type of Study	Measurement Endpoint	Test Organisms / Effect	Assessment Endpoint
Fish	Lab	Acute Fish (96-hours) LC50 = 2,000 μg/L	Sheepshead minnow / Mortality	Fish Mortality Estimated to Occur at 2,000 µg/L
	Lab	Chronic Fish NOAEC = 1,900 μ g/L; LOAEC= 3400 μ g/L; MATC= 2542 μ g/L	Sheepshead minnow [89 % red. Juv. survival]	Reduction in Fish Populations Estimated to Occur at 2542 µg/L
	Distribution of Lab Data	10^{th} centile value = 23 μ g/L	Saltwater Aquatic Animal Chronic Data	Fish Population Reductions Estimated to Occur at 23 µg/L
Invertebrates	Lab	Acute Invertebrate $LC_{50} = 94$ $\mu g/L$	Copepod (Acartia tonsa)	Invertebrate Mortality Estimated to Occur at 94 µg/L

Key Group of Non-target Organisms	Type of Study	Measurement Endpoint	Test Organisms / Effect	Assessment Endpoint
	Distribution of Lab Data	10^{th} centile value = 23 μ g/L	Saltwater Aquatic Animal Chronic Data	Invertebrate Population Reductions Estimated to Occur at 23 µg/L
	Lab	Chronic Invertebrate NOAEC = 80 μ g/L; LOAEC= 190 μ g/L; MATC= 123 μ g/L	Mysid [37 % red. Adult survival]	Reduction in Invertebrate Populations Estimated to Occur at 123 µg/L
Non-Vascular Plants	Lab	Acute (120-hours) Algae $LC_{50} = 22 \ \mu g/L$	Algae (Chrysophyceae; Isochrysis galbana)	Algae Mortality Estimated to Occur at 22 µg/L
	Distribution of Lab Data	10^{th} centile value = 27 μ g/L for acute effects on phytoplankton, and 9.1 μ g/L for chronic effects on plants	Saltwater Aquatic Plant Data	Acute Effects on Phytoplankton Estimated at 27 µg/L and Reductions in Primary Production Estimated to Occur at 9.1 µg/L
Vascular Plants	Lab	Significant reduction in dry weight occurred at 10 µg/L (calculated MATC from NOAEC=7.5 and LOAEC=14.3)	Sago Pondweed	Reduction in Macrophytes Estimated to Occur at 10 µg/L
	Distribution of Lab Data	10^{th} centile value = 9.1 μ g/L for chronic effects on plants	Saltwater Aquatic Plant Data	Reductions in Macrophytes Estimated to Occur at 9.1 µg/L
	Microcosm	16% Reduction in Tuber formation; 55% Reduction in Biomass over reproductive season at 4 µg/L	Wild Celery (Vallisneria Americana)	Reduction in Macrophytes Likely to Occur at 4 μg/L

a. Ponds

Based on modeling simulations, it is possible that for months every year, atrazine concentrations in ponds from use on sorghum and sugarcane exceed the levels at which studies have shown reductions in fish and invertebrate populations, macrophytes, and primary production (>20ppb). For corn, modeling simulations indicate that atrazine concentrations in ponds exceed the levels at which studies have shown reductions in fish populations, invertebrate populations, macrophytes, and primary production in 70 to 83% of the years. From 70 to 75% of the years, atrazine concentrations in ponds from use on sugarcane exceed the levels at which reproduction studies have shown reductions in invertebrate populations and fish growth. For sorghum, the percentage of exceedences are from 2.8 and <5% of the years.

b. Lakes and Reservoirs

Monitoring data in lakes and reservoirs have indicated that a number of drinking water sites have atrazine concentrations greater than 20 ppb in the finished water. This is the level at which reductions in fish populations, invertebrate populations, macrophytes, and primary production has been observed in simulated field studies.
c. Streams

The highest atrazine concentrations occur in brief pulses following rain events and are usually associated with the next rain event after an application. Atrazine concentrations in streams vary frequently, depending on usage and rainfall patterns, and vary from watershed to watershed, depending on the size of the watershed, the intensity of agricultural activity, and the flow volume and location of the watershed.

Reductions in invertebrate populations and primary production were likely to occur in 12 to 34% of the 129 Midwestern streams sampled following atrazine applications in 1989. In addition, based on simulated field testing and laboratory testing macrophytes may be reduced in 52 to 63% of the streams sampled in the weeks following atrazine applications. Reduction in primary production is also possible at these levels. Later in the season, concentrations that would affect primary production and macrophytes were seen in only 1% of the 143 streams sampled. Based on sampling in 1995, reduction in invertebrate populations are primary production are likely to occur in 17 to 35% of the 50 Midwestern streams sampled following atrazine applications. In addition, based on laboratory testing, macrophytes may be reduced in 64% of the streams sampled following atrazine applications.

The highest pulse concentrations seen in streams exceed many of the assessment endpoints for non-target organisms. While the duration of these high concentrations is not likely to be long since pulses of runoff tend to move quickly downstream, they may last for hours, especially during the Spring and during runoff events when many fields in a watershed are being treated with atrazine around the same time. Thus, it is possible that reductions in invertebrate populations and primary production could occur as a result of post-application stream contamination from the Spring application of atrazine. The frequency of such reductions occurring may be low considering the frequency of the pulses above 10 ppb and depending upon the flow volume of each stream. The frequency of similar reductions occurring in rivers is probably lower than for streams since the peaks and average concentrations of atrazine are lower in rivers.

Based on NAWQA monitoring data for 40 agricultural sites, 11 to 35% of the 40 sites exceed atrazine concentrations at which invertebrate populations and primary production occur, based on the maximum atrazine concentrations seen. NAWQA monitoring data, however, were not designed to time monitoring to correspond with atrazine treatment and may underestimate concentrations likely to be present in streams.

d. Estuaries

Based on maximum atrazine concentrations in Louisiana, 77% of the sites sampled exceed concentrations at which reductions in macrophytes occur. This falls to 26 to 61% for the mean concentration. About 30% of the sites based on maximum concentrations and about 7% based on mean concentrations exceed the concentrations at which reductions in fish and invertebrate populations occur.

Maximum atrazine concentrations in the Chesapeake Bay exceed levels that are likely to reduce macrophytes for 8% of the site and year combinations sampled. Atrazine could be contributing to reductions in submerged aquatic vegetation at certain sites in the Bay. It is possible that atrazine and other herbicides are a source of stress to aquatic vegetation. This, combined with eroding sediment could negatively affect estuarine ecosystems.

6. Risk to Endangered Species

Endangered species LOCs are exceeded for terrestrial plants, birds and small mammals from the agricultural uses of atrazine. However, risks to endangered birds and mammals are not anticipated from the dietary residues based on the methods and timing of atrazine applications. The risk exceedences for endangered terrestrial plants are based on spray drift and runoff into the habitats for terrestrial and semi-aquatic plants.

Endangered aquatic species LOCs are exceeded for some agricultural uses of atrazine. Acute risks to endangered freshwater invertebrates and aquatic vascular plants are exceeded for all crop uses except for the typical use rate on corn (1.1 lb ai/A.) Chronic levels of concern for endangered species are exceeded for fish and aquatic invertebrate reproduction for all use rates, except for corn and the typical use rate on sorghum.

Atrazine was included in the formal Section 7 consultations with FWS for the rangeland/pastureland and the forest cluster reviews in 1984. The Biological Opinions for both reviews stated that these uses of atrazine would jeopardize the continued existence of over 60 species of plants associated with rangeland and ten species of plants associated with forests. Atrazine was also included in the sorghum cluster review in 1983, and the Biological Opinion found possible jeopardy to several species of fish plus one insect (loss of habitat) and one plant species.

In addition, atrazine was one of 109 active ingredients included in the reinitiated Biological Opinion of 1989 from the FWS. This Opinion was primarily for aquatic species. In this Opinion, FWS found jeopardy to nine species of freshwater fish, two freshwater crustaceans, four amphibians and twelve species of plants for its uses on field crops, rangeland and forests. FWS provided "Reasonable and Prudent Alternatives" (RPAs) for each jeopardized species and "Reasonable and Prudent Measures" (RPMs) for 43 non-jeopardized species to minimize incidental take of these latter species. These consultations and the findings expressed in the Opinions, however, are based on old labels and application methods, less refined risk assessment procedures and an older approach to consultation which is currently being revised through interagency collaboration.

When the regulatory changes recommended in this IRED are implemented and the ecological effects and environmental fate data are submitted and accepted by the Agency, the Reasonable and Prudent Alternatives and Reasonable and Prudent Measures in the Biological Opinion(s) may need to be reassessed and modified based on the new information.

The Agency is currently engaged in a Proactive Conservation Review with FWS and the

National Marine Fisheries Service under section 7(a)(1) of the Endangered Species Act. The objective of this review is to clarify and develop consistent processes for endangered species risk assessments and consultations. Subsequent to the completion of this process, the Agency will reassess the potential effects of atrazine use to federally listed threatened and endangered species. At that time the Agency will also consider any regulatory changes recommended in the IRED that are being implemented. Until such time as this analysis is completed, the overall environmental effects mitigation strategy articulated in this document and any County Specific Pamphlets described in Section IV which address atrazine, will serve as interim protection measures to reduce the likelihood that endangered and threatened species may be exposed to atrazine at levels of concern.

The potential adverse effects of atrazine on homing and reproduction in endangered salmon and other anadromous fish species is currently uncertain. The laboratory study of olfactory function in mature Atlantic salmon parr and the effect of atrazine in the range of 0.5 μ g/L for sensing female hormones in urine and behavior to ground salmon skin is notable. This is so especially if the effects are significant on salmon reproduction at such a low atrazine concentration, because existing concentrations in streams inhabited by endangered salmonids may exceed this level for prolonged periods. Atrazine concentrations are likely to be their highest in the late spring and early summer following applications, at a time when salmon are returning from the ocean to spawn. It is unclear from the results of the test by Moore and Waring (1998) whether the effect on olfactory function is manifested in mature adult salmon and what effect it might have on reproduction and recruitment. These data are preliminary and additional studies are necessary to determine if there are adverse atrazine effects on adult salmon homing and adult male milt production responses to female hormones in ovulating female urine. Further study is also needed on whether those effects could be significant to reproduction and recruitment.

7. Ecological Incident Reports

The Agency received 109 ecological incident reports on atrazine between 1991 and 2001. Of the 109 incidents, thirteen are classified as "Unlikely," 50 are listed as "Possible," and two are "Unrelated." In only one case, a 1996 cotton use in Louisiana, were casualties (fish) analyzed for atrazine residues. Shad and carp tested positive for atrazine, but the conclusion was that atrazine was unlikely to be the cause of mortality. Forty of the 109 incidents are considered "Probable," and four incidents are listed as "Highly Probable." The 4 incidents listed as "Highly Probable" include 3 home lawn use incidents and 1 corn use incident. The corn use incident reported affecting 100 bass and 100 bream resulting from a registered use. The three home lawn incidents were lawn applications that affected the turf itself; two were concluded to be accidental misuse, and the third was a registered use that affected grass and non-target plants.

The forty "Probable" incidents include: 16 cases affecting corn; 11 affecting grass; 11 fish kills; 1 bird kill; and affects on ornamentals, fruit trees, berries, garden, oats, vegetation around an atrazine/cyanazine-treated field (runoff), and greenhouse plants (pond irrigation water). Four "probable" incidents are classified as accidental misuse: two cases from corn use, pears, raspberry and oats and grass and ornamentals; and two lawn misuse cases affecting grass

Atrazine alone is not very toxic to the birds, mammals, and aquatic animals cited in most of these incidents. In none of these cases has evidence been provided that firmly demonstrate that atrazine has produced the reported effects. In many cases, the inference of these reported incidents to atrazine effects is likely due to the wide spread use of atrazine and the proximity of the atrazine application and timing to the occurrence to the incident. About 60 percent of the reported fish kills listed under atrazine in the incident record occur during the Spring when atrazine is applied, soils are saturated and heavy rainfall is frequent. Heavy runoff may carry atrazine, other pesticides and organic loads into surface waters. The high volume and widespread use of atrazine increases the probability of co-occurrence of fish kills with atrazine applications.

8. Endocrine Disruption

Atrazine has been associated with sub-lethal effects in aquatic organisms and amphibians in research presented in the open, peer-reviewed literature. These include potential effects on endocrine-mediated processes in frogs at ~ 0.1 μ g/L and in largemouth bass at ~ 50 μ g/L, as well as olfactory effects in salmon at ~ 0.5 μ g/L. In addition, some studies have been conducted to address this issue and found that these effects were not demonstrated.

The Agency's ecological risk assessment does not suggest that endocrine disruption, or potential effects on endocrine-mediated pathways, be regarded as an regulatory endpoint at this time. Nor does the Agency have evidence to state that there is no reliable evidence that atrazine causes endocrine effects in the environment. Based on the existing uncertainties in the available database, atrazine should be subject to more definitive testing once the appropriate testing protocols have been established. The Agency is aware that several pertinent studies are being performed at this time by researchers that may to reduce some of the uncertainties in understanding potential atrazine effects on amphibian endocrinology and reproductive and developmental responses. The Agency has committed to provide these studies along with other available studies, a summary of the available data and methodologies and various data analyses for an external scientific review by the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) Science Advisory Panel (SAP) at a public meeting which is scheduled for June, 2003. The Agency anticipates that the results from this SAP meeting will provide significant input to enable it publish an amendment to this IRED in October 2003 which will address the issue of the potential effects of atrazine on amphibian endocrinology and development.

US EPA ARCHIVE DOCUMENT

IV. Interim Risk Management and Reregistration Decision

A. Determination of Interim Reregistration Eligibility

Section 4(g)(2)(A) of FIFRA calls for the Agency to determine whether products containing a specific active ingredient are eligible for reregistration after submission of the relevant data. The Agency has previously identified and required the submission of the generic data (*i.e.*, data specific to an active ingredient) to support reregistration of products containing atrazine.

The Agency has completed its assessment of the ecological and occupational risks associated with the use of currently registered pesticides containing the active ingredient atrazine, as well as an atrazine-specific dietary risk assessment and residential risk assessment that have not considered the cumulative effects of the triazines, as a class. The ecological assessment does not address the potential for effects on amphibian endocrinology and reproductive and developmental responses. As mentioned above, the Agency will publish an amendment to this IRED in October 2003 which will address the issue. Based on a review of the generic data, other special studies, and public comments on the Agency's assessments, EPA has sufficient information on the human health and ecological effects of atrazine to make interim decisions as part of the tolerance reassessment process under FFDCA and reregistration under FIFRA, as amended by FOPA. The Agency has determined that atrazine products, based on currently approved labeling, pose unreasonable dietary, residential, occupational, and ecological risks. However, the Agency believes that these risks can be mitigated through routine changes to pesticide labeling and through actions designed to further prevent risks from occurring that are described in a Memorandum of Agreement with the registrants. Accordingly, the Agency has determined that the active ingredient atrazine is eligible for reregistration provided that: (i) the additional data needs that the Agency has identified are addressed; (ii) the risk mitigation measures outlined in this document are adopted, and label amendments are made to reflect these measures; (iii) the consideration of cumulative risk for the triazines supports a final reregistration eligibility decision; and (iv) the Memorandum of Agreement is implemented. Further mitigation measures and additional data requirements may be warranted following the completion of the stakeholder process outlined in this document.

Although the Agency has not yet considered the cumulative risk for the triazines, the Agency is issuing this interim assessment now in order to identify risk reduction measures that are necessary to support the continued use of atrazine. Based on its current evaluation of atrazine alone, the Agency has determined that atrazine products, unless labeled and used as specified in this document, would present risks inconsistent with FIFRA. Accordingly, should a registrant fail to implement any of the risk mitigation measures identified in this document, the Agency may take regulatory action to address the risk concerns from use of atrazine.

At the time that a cumulative assessment is conducted, the Agency will address any outstanding risk concerns. For atrazine, if all changes outlined in this document are incorporated into the labels and the Memorandum of Agreement is implemented, then all currently identified risks will be mitigated. However, because this is an interim RED, the Agency may take any

necessary further actions to finalize the reregistration eligibility decision for atrazine after assessing the cumulative risk of the triazine class. Such an incremental approach to the reregistration process is consistent with the Agency's goal of improving the transparency of the reregistration and tolerance reassessment processes. By evaluating each triazine in turn and identifying appropriate risk reduction measures, the Agency is addressing the risks from use of all of the triazines in as timely a manner as possible.

Because the Agency has not yet considered cumulative risk for all of the triazines, this reregistration eligibility decision does not fully satisfy the reassessment of the existing atrazine food residue tolerances as called for by the Food Quality Protection Act (FQPA). When the Agency has completed the cumulative assessment, atrazine tolerances will be reassessed. At that time, the Agency will reassess atrazine along with the other triazine pesticides to complete the FQPA requirements and make a final reregistration eligibility determination for atrazine. By publishing this interim decision on reregistration eligibility and requesting mitigation measures now for the individual chemical atrazine, the Agency is not deferring or postponing FQPA requirements; rather, EPA is taking steps to assure that uses that exceed FIFRA's unreasonable risk standard do not remain on the label longer than is necessary, pending completion of the cumulative assessment required under FQPA. This decision does not preclude the Agency from making further FQPA determinations or tolerance-related rulemakings that may be required on this pesticide or any other in the future.

If the Agency determines, before finalization of the interim RED, that any of the determinations described in this interim RED are no longer appropriate, the Agency will pursue appropriate action, including, but not limited to, reconsideration of any portion of this interim RED.

Label changes that are necessary to adequately mitigate the risks of atrazine use are described in Section V of this document. Appendix A summarizes the uses of atrazine that are eligible for reregistration. Appendix B identifies the generic data requirements that the Agency reviewed as part of its determination of reregistration eligibility, and lists the submitted studies that the Agency found acceptable.

B. Summary of Phase 5 Comments and Responses

When making its interim reregistration decision, the Agency took into account all comments received during Phases 3, 4, and 5 of the Public Participation Process for atrazine. These comments are available in the docket in their entirety. Numerous letters were received commenting on the atrazine risk assessments during Phase 5 of the public process. Comments that addressed human health and ecological concerns were received from the technical registrants (Syngenta Crop Protection, Inc., and Sipcam Agro USA); state and other regulatory agencies (California Department of Pesticide Regulation, California Regional Water Quality Control Board, State of New York Office of the Attorney General, Connecticut Office of the Attorney General, U.S. Department of the Interior, Fish and Wildlife Service); environmental and advocacy groups (Natural Resources Defense Council [NRDC], People for the Ethical Treatment of Animals, Beyond Pesticides/NCAMP, Center for Regulatory Effectiveness; universities (Yale

University; Texas Tech University; U.C. Berkeley); grower and agricultural advocacy groups (National Agricultural Aviation Association, Sugar Cane Growers Cooperative of Florida, Weed Science Society of America, Triazine Network, Marion County Farm Bureau, American Farm Bureau Federation, Illinois Farm Bureau, Louisiana Farm Bureau Federation, Ohio Farm Bureau Federation, Minnesota Farm Bureau); water advocacy groups (American Water Works Association); and many private citizens and growers. Comments were received on the following topics:

- Toxicology and Mode of Action of Atrazine and Endpoints Chosen;
- Carcinogenicity of Atrazine;
- Ecological Risks of Atrazine;
- Exposure to Atrazine and its Degradates;
- Other Atrazine Regulations;
- Occupational and Residential Exposure to and Risk from Atrazine;
- Atrazine Treatment Costs; and
- Benefits of the Use of Atrazine.

These comments have been addressed and the assessments refined as appropriate by the Agency. Response to Comments documents addressing most of these comments are available in the public docket and on the Agency's web page at http://www.epa.gov/pesticides/reregistration.

Three comments that were received are being addressed in the IRED, as follows: comments from the The New York State Office of the Attorney General (NYOAG) on the Endangered Species Act (ESA) and consultations with the U.S. Fish and Wildlife Service (FWS); comments from the Natural Resources Defense Council (NRDC) on the consideration of farm worker children in the assessment; and comments from the Center for Regulatory Effectiveness on the new Data Quality Act (DQA)

- Comment: The NYOAG commented to the Agency that EPA must initiate consultations with the FWS because EPA's issuance of a reregistration decision for atrazine triggers the ESA consultation requirement and stated that the ESA requires that the Agency consider any existing FWS biological opinion.
- Response: Atrazine has been reviewed on several occasions by the FWS as described in Section III above under the discussion on endangered species. Currently, the Agency is developing a proposal to implement its Endangered Species Protection Program (ESPP). The Agency is soliciting public opinion on this proposal through issuance of a Federal Register Notice, Endangered Species Protection Program Field Implementation, December 2, 2002. The Agency obtained input on several key aspects of the program in a workshop held in September 2002 that included the pesticide industry, pesticide user groups, and environmental advocacy organizations. An Advance Notice of Proposal Rulemaking (ANPR), Endangered Species and Pesticide Regulation, was issued jointly by the Agency, the Department of Interior and the Department of Commerce on January 24, 2003. The ANPR is soliciting comments regarding methods to make the consultation

process more efficient.

Comment: The Center for Regulatory Effectiveness commented on November 25, 2002, requesting correction under the Environmental Protection Agency's (EPA) Information Quality Guidelines. This Request for Correction was filed on behalf of the Kansas Corn Growers Association, the Triazine Network, and the Center for Regulatory Effectiveness. The complaint alleges that the April 22, 2002, Environmental Risk Assessment for Atrazine does not comply with the "Data Quality Act" because the document "states that atrazine causes endocrine effects in various organisms including frogs." The comment requests that the environmental risk assessment be corrected to state that there is no reliable evidence that atrazine causes "endocrine effects" in the environment and that there can be no reliable, accurate or useful information regarding atrazine's endocrine effects until and unless there are test methods for those effects that have been properly validated.

Response: After reviewing the questions raised in the request, the Agency has decided that some minor clarifications of the April 2002 Environmental Risk Assessment for Atrazine may help to avoid any future misunderstanding of the Agency's position on the environmental effects of atrazine. Any such clarifications will be included in a revised *Environmental Risk Assessment for Atrazine*. This Request for Correction is further addressed in the Agency's Response to Comments document available in the public docket and on the Agency's web page at http://www.epa.gov/pesticides/reregistration.

The Agency is providing a 60-day public comment period on this IRED. While all comments are welcome, those with specific data or information bearing on the risk and benefit assessments are most useful.

C. Regulatory Position

1. FQPA Assessment

a. "Risk Cup" Determination

As part of the FQPA tolerance reassessment process, EPA assessed the risks associated with this triazine. The assessment was for this individual triazine, and does not attempt to fully reassess these tolerances as required under FQPA. FQPA requires the Agency to evaluate food tolerances on the basis of cumulative risk from substances sharing a common mechanism of toxicity, such as the toxicity expressed by the triazine pesticides through a common biochemical interaction. The Agency will evaluate the cumulative risk posed by the entire class of triazines once the policy concerning cumulative assessments is fully resolved.

EPA has determined that risk from exposure to atrazine exceeds its own "risk cup" for the currently registered uses of atrazine. In reaching this determination, EPA has considered the available information on the special sensitivity of infants and children, as well as dietary (food and drinking water) and residential exposure to atrazine. However, if the use of atrazine is modified, the Memorandum of Agreement is implemented, and any other mitigation measures outlined in this document are implemented, the Agency believes that risks from the use of atrazine will not exceed the Agency's level of concern (i.e., atrazine uses will "fit" within its risk cup). Therefore, the atrazine tolerances can remain in effect until a full reassessment of the cumulative risk from all triazines is completed.

b. Tolerance Summary

Tolerances for residues of atrazine *per se* are established under 40 CFR §180.220(a)(1). Tolerances for atrazine and its chlorinated metabolites are established under 40 CFR §180.220(a)(2).

The Agency has determined that the tolerance expression in 40 CFR §180.220(a)(1) must be changed to reflect the combined residues of atrazine and its chlorinated metabolites, and that all tolerances based on atrazine and its chlorinated metabolites should be placed together under 40 CFR § 180.220 (a)(1). A summary of atrazine tolerance reassessments is presented in Table 28. Reassessments are based on tolerances redefined as atrazine and its chlorinated metabolites.

The Agency has also determined that tolerance expressions for the combined residues of each of the four hydroxy compounds are not needed.

The Agency will commence proceedings to revoke and modify existing tolerances, and to correct commodity definitions. The establishment of a new tolerance or raising tolerances will be deferred, pending consideration of cumulative risk for the triazines. "Reassessed" does not imply that all of the tolerances have been fully reassessed as required by FQPA, since these tolerances may only be fully reassessed once the cumulative risk assessment of all triazine pesticides is considered, as required by the statute. Rather, this IRED provides reassessed tolerances for atrazine in/on various commodities, supported by all the submitted residue data, only for atrazine. EPA will finalize these tolerances after considering the cumulative risks for all triazine pesticides. The Agency's tolerance summary is provided in Table 28.

Tolerances Listed Under 40 CFR §180.220(a)(1)

Tolerances for residues in/on sweet corn forage and fodder can be lowered to 4.0 ppm and 2.0 ppm, respectively, to 1.5 ppm for field/pop corn forages, and to 0.5 ppm for field/pop corn fodder and the designation "fodder" should be revised to "stover." The tolerances for residues in/on corn, fresh, K+CWHR and corn grain can be decreased to 0.20 ppm, each based on combined nondetectable residues at 0.05 ppm for atrazine and each chloro-metabolite. The tolerance for residues in/on macadamia nuts can be lowered to 0.20 ppm based on combined nondetectable residues at 0.05 ppm for atrazine and each chloro-metabolite. Tolerances for residues in/on sorghum forage and fodder can be lowered to 0.50 ppm, each; the designation "fodder" should be revised to "stover." The tolerance for residues in/on sorghum grain can be **US EPA ARCHIVE DOCUMENT**

lowered to 0.20 ppm based on combined nondetectable residues at 0.05 ppm for atrazine and each chloro-metabolite. The tolerances for residues in/on wheat fodder, grain, and straw can be lowered to 1.5, 0.10, and 0.50 ppm, respectively; the designation "fodder" should be revised to "forage." The tolerance for sugar cane can be lowered to 0.20 ppm based on combined nondetectable residues at 0.05 ppm for atrazine and each chlorinated metabolite. The tolerances for residues in/on sugarcane, forage and fodder, should be revoked, as these are no longer regulated as livestock feed items. The tolerance for residues in/on guavas is adequate.

Existing tolerances for residues in commodities from cattle, goats, horses, and sheep (0.02 ppm) must be increased to 0.10 ppm include combined residues of atrazine and chlorinated metabolites. Tolerances have been reassessed based on animal feeding study data.

The tolerances for commodities from hogs, poultry, and eggs can be revoked as there is no reasonable expectation of finite residues.

Syngenta proposes lowering the tolerances for sweet and field corn forages to 1.5 ppm, and the tolerance for sorghum forage to 0.25 ppm. For postemergent treatments, the registrant proposes a change from a 30-day PHI to a 45-day PHI for sweet corn and sorghum forages, and from a 30-day PHI to a 60-day PHI for field corn forage. For preemergent treatments on sorghum, they propose a change from a 45-day PHI to a 60-day PHI. Preemergent treatments on sweet and field corn will retain the existing 45-day and 60-day PHI, respectively. Existing labels contain 21 and 30-day PHIs for corn and sorghum forages.

The Agency has reassessed the tolerance for sweet corn forages at 4.0 ppm based on field trial data showing the highest chlorotriazine residues detected at 3.2 ppm after one treatment, and a 30-day PHI. Syngenta states that a sweet corn forage tolerance of 1.5 ppm is supported by data representing a 45-day PHI. Maximum chlorotriazine residues on sweet corn forage harvested 45 days after postemergent treatments at the 1X rate expected to result in the highest residues (0.5 + 2.0 lbs ai/A) were approximately 1.15 ppm. The Agency concludes that if labels for postemergent sweet corn use are amended to allow a minimum PHI of 45 days, the tolerance for sweet corn forage be lowered to 1.5 ppm.

The Agency has already reassessed the tolerance for field corn forage at 1.5 ppm based on the highest chlorotriazine residues detected at 1.1 ppm after a 1X treatment, at either a 30-day or a 60-day PHI. Maximum chlorotriazine residues on field corn forage harvested 60 days after postemergent treatments at the 1X rate expected to result in the highest residues (0.5 + 2.0 lbsai/A) were approximately 1.11 ppm. The Agency concludes that all atrazine labels for postemergent field corn should be amended to allow a minimum PHI of 60 days.

The tolerance for sorghum forage has already been reassessed at 0.5 ppm based on field trial data showing the highest chlorotriazine residues detected at 0.22 ppm after a 1X treatment, and a 23-day PHI. Maximum chlorotriazine residues on sorghum forage harvested 30 and 45 days after postemergent treatments at the 1X rate were approximately 0.35 ppm and 0.09 ppm, respectively. Maximum chlorotriazine residues on sorghum forage harvested 45 and 60 days after preemergent treatments at the 1X rate were approximately 0.12 and 0.16 ppm, respectively.

The Agency concludes that if all atrazine labels for postemergent sorghum use are amended to allow a minimum PHI of 45 days, and for preemergent sorghum use to allow a minimum PHI of 60 days, the tolerance for sorghum forage be lowered to 0.25 ppm.

The Agency has recalculated the maximum theoretical dietary burden (MTDB) for dairy cattle based on a reassessed sweet corn forage tolerance of 1.5 ppm. The resulting MTDB for dairy cattle is approximately 2.0 ppm chlorotriazines. Extrapolating the results from cattle feeding studies to this MTDB results in a reassessed milk tolerance of 0.03 ppm. If all atrazine labels are amended to the proposed PHIs discussed above for sweet and field corn forage and sorghum forage, the milk tolerance can be lowered to 0.03 ppm, based on available feeding studies and residue data.

Tolerances Needed Under 40 CFR §180.220(a)(1)

The Agency proposes establishing a tolerance for residues of atrazine and the chlorinated metabolites in wheat hay based on existing wheat forage residue data, and taking into account any concentration of residues during drying processes for hay. Alternatively, the registrant may submit field trials to determine an appropriate tolerance level for residues in/on wheat hay.

An additional processing study is required for sugarcane, in order to determine the need for a separate tolerance for residues in molasses.

Tolerances Currently Listed Under 40 CFR §180.220(a)(2) To Be Placed Under 40 CFR §180.220(a)(1)

The Agency recommends that the established tolerances for residues of atrazine in or on orchard grass and orchard grass, hay be revoked, as these uses are not being supported. The Agency also recommends the revocation of the 15 ppm tolerance for Perennial rye grass and that the use be cancelled. In addition, the tolerance for Grass, range should be revoked and a crop group tolerance for Crop Group 17 (Grass, Forage, Fodder, and Hay) should be established under 180.220(a)(1), that will cover range grasses. Residue data on representative grasses to support the crop group tolerance are recommended. This will include residue data on bermuda grass, bluegrass, and bromegrass or fescue from 12 trials (four for each cultivar) conducted in concordance with the current label rates. If the registrant(s) do not wish to support a crop group tolerance with new residue data, the existing tolerances should be revoked and the uses cancelled.

Table 28. Tolerance Reassessment Summary for Atrazine

Commodity	Established	Reassessed	Comments	
	Tolerance, ppm	Tolerance, ppm	[Correct Commodity Definition]	
Tolerances Listed Under 40 CFR §180.220(a)(1) ¹				

Commodity	Established Tolerance, ppm	Reassessed Tolerance, ppm	Comments [Correct Commodity Definition]	
Cattle, fat	0.02	0.10	Reassessed tolerances based on reassessed sweet corn forage tolerance of 4.0 ppm. Registrant	
Cattle, mbyp	0.02	0.10	recommended lowering tolerances for sweet corn forage to 1.5 ppm pending amendment of all	
Cattle, meat	0.02	0.10	atrazine labels for postemergent sweet corn use to allow a minimum PHI of 45 days.	
Corn, fodder, field	15	0.5	corn, field, stover	
Corn, fodder, pop	15	0.5	corn, pop, stover	
Corn, fodder, sweet	15	2.0	corn, fresh, stover	
Corn, forage, field	15	1.5	Amend all atrazine labels for postemergent and preemergent field corn use to require a minimum PHI of 60-days.	
Corn, forage, pop	15	1.5		
Corn, forage, sweet	15	1.5	Amend all atrazine labels for postemergent and preemergent sweet corn use to require a minimum PHI of 45 days.	
Corn, fresh, K+CWHR	0.25	0.20		
Corn, grain	0.25	0.20		
Eggs	0.02	Revoke	The Agency concludes that there is no reasonable expectation of finding quantifiable atrazine residues in eggs or the meat, fat, or meat byproducts of poultry	
Goats, fat	0.02	0.10	Reassessed tolerances based on reassessed sweet corn forage tolerance of 4.0 ppm. Registrant	
Goats, mbyp	0.02	0.10	recommended lowering tolerances for sweet corn forage to 1.5 ppm pending amendment of all	
Goats, meat	0.02	0.10	atrazine labels for postemergent sweet corn use to allow a minimum PHI of 45 days.	
Guava	0.05	0.05		
Hogs, fat	0.02	Revoke	No reasonable expectation of finding quantifiable	
Hogs, mbyp	0.02	Revoke	atrazine residues in the meat, fat, or meat	
Hogs, meat	0.02	Revoke	byproducts of hogs.	
Horses, fat	0.02	0.10	Reassessed tolerances based on reassessed sweet corn forage tolerance of 4.0 ppm. Registrant	
Horses, mbyp	0.02	0.10	recommended lowering tolerances for sweet corn forage to 1.5 ppm pending amendment of all	
Horses, meat	0.02	0.10	atrazine labels for postemergent sweet corn use to allow a minimum PHI of 45 days.	
Macadamia nuts	0.25	0.20		
Milk	0.02	0.03	All atrazine labels must be amended to the proposed PHIs for sweet and field corn forage at sorghum forage.	

 Table 28. Tolerance Reassessment Summary for Atrazine

Table 28. Tolerance Reassessment Summary for Atrazine				
Commodity	Established Tolerance, ppm	Reassessed Tolerance, ppm	Comments [Correct Commodity Definition]	
Poultry, fat	0.02	Revoke	The Agency concludes that there is no reasonable	
Poultry, mbyp	0.02	Revoke	expectation of finding quantifiable atrazine residues in eggs or the meat, fat, or meat	
Poultry, meat	0.02	Revoke	byproducts of poultry.	
Rye, grasses, perennial	15	Revoke	Uses are restricted to the Conservation Reserve Program (CRP) lands in OK, OR, NE, and TX. Restrictions on grazing and cutting for hay apply.	
Sheep, fat	0.02	0.10	Reassessed tolerances based on reassessed sweet corn forage tolerance of 4.0 ppm. Registrant	
Sheep, mbyp	0.02	0.10	recommended lowering tolerances for sweet corn forage to 1.5 ppm pending amendment of all	
Sheep, meat	0.02	0.10	atrazine labels for postemergent sweet corn use to allow a minimum PHI of 45 days.	
Sorghum, fodder	15	0.50	Sorghum, stover	
Sorghum, forage	15	0.25	Amend all atrazine labels for postemergent sorghum use to require a minimum PHI of 45 days, and for preemergent sorghum use to require a minimum PHI of 60 days.	
Sorghum, grain	0.25	0.20		
Sugarcane	0.25	0.20		
Sugarcane, fodder			Not a significant livestock feed item	
Sugarcane, forage	0.25	Revoke	Not a significant livestock feed item	
Wheat, fodder	5	1.5	Wheat, forage	
Wheat, grain	0.25	0.10		
Wheat, straw	5	0.50		
Tolerances Listed Under 40 CFR §180.220(a)(2) To be Places Under 40 CFR §180.220(a)(1) ¹				
Grasses, orchardgrass	15	Revoke	Uses on orchard grass are not supported by the basic produce	
Grasses, orchardgrass, hay	15	Revoke	Uses on orchard grass are not supported by the basic producer	

Table 28. Tolerance Reassessment Summary for Atrazine

Table 28. Tolerance Reassessment Summary for Atrazine			
Commodity	Established Tolerance, ppm	Reassessed Tolerance, ppm	Comments [Correct Commodity Definition]
Grasses, range	4	TBD	Uses are restricted to the Conservation Reserve Program (CRP) lands in OK, OR, NE, and TX. Restrictions on grazing and cutting for hay apply. However, these grasses may be fed during drought and emergencies. Registrant may establish a crop group tolerance under Crop Group 17. Residue data on representative crops are recommended. Once data are submitted a crop group tolerance should be established under 180.220(a)(1). Table 2 of OPPTS 860.1500 Crop Field Trials calls for 12 trials (four for each cultivar). Existing tolerances are believed to be unsupportable based on today's data requirements. If the registrant(s) do not wish to support a crop group tolerance with new residue data, the existing tolerances will be revoked and the uses cancelled.
Tolerances Needed Under 40 CFR §180.220(a)(1) ¹			
Sugarcane molasses	none	TBD^2	Additional data are required to determine the need for a separate tolerance.
Wheat, hay	none	5	This tolerance is based on residue data for wheat forage, taking into account concentration of residues as forage is dried to hay. Alternatively, the registrants may provide residue data on wheat hay from field trials.
Tolerances to be Proposed Under 40 CFR §180.220(d)			
[Indirect residues in foliage of legume vegetables]	none	TBD	Additional data are required to determine the need for indirect residue tolerance(s).

Table 28. Tolerance Reassessment Summary for Atrazine

¹Tolerances reassessed based on combined residues of atrazine, G30033, G-28279, and G-28273.

 ${}^{2}TBD = To$ be determined. Reassessment of tolerance(s) cannot be made at this time because additional data are required.

³Tolerances based on combined residues of 2-hydroxy-4-ethylamino-6-isopropylamino-s-triazine (G-34048), 2-amino-4-hydroxy-6-

isopropylamino-s-triazine (GS-17794), 2-amino-4-hydroxy-6-ethylamino-s-triazine (GS-17792), and 2,4-diamino-6-hydroxy-s-triazine (GS-17791).

3. Codex Harmonization

The Codex Alimentarius Commission has not proposed or established maximum residue limits (MRLs) for residues of atrazine in/on agricultural commodities. Therefore, there are no issues regarding harmonization or compatibility of U.S. tolerances with Codex MRLs.

4. Endocrine Disruptor Effects

EPA is required under the FFDCA, as amended by FQPA, to develop a screening program to determine whether certain substances (including all pesticide active and other ingredients) "may have an effect in humans that is similar to an effect produced by a naturally occurring estrogen, or other such endocrine effects as the Administrator may designate."

Following the recommendations of its Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC), EPA determined that there were scientific bases for including, as part of the program, the androgen and thyroid hormone systems, in addition to the estrogen hormone system. EPA also adopted EDSTAC's recommendation that the Program include evaluations of potential effects in wildlife. For pesticide chemicals, EPA will use FIFRA and, to the extent that effects in wildlife may help determine whether a substance may have an effect in humans, FFDCA authority to require the wildlife evaluations. As the science develops and resources allow, screening of additional hormone systems may be added to the Endocrine Disruptor Screening Program (EDSP).

When the appropriate screening and/or testing protocols being considered under the Agency's EDSP have been developed, atrazine may be subjected to additional screening and/or testing to better characterize effects related to endocrine disruption.

5. Labels

A number of label amendments, in addition to the existing label requirements, are necessary in order for atrazine products to be eligible for reregistration. The Agency has determined that these measures, in addition to the existing label requirements, will adequately reduce risks.

Provided the following risk management measures are incorporated in their entirety into labels for atrazine-containing products, the Agency finds that all currently registered uses of atrazine are eligible for interim reregistration, pending consideration of cumulative risks of the triazines. While all uses are eligible at this time, the cotton use will be phased out over five years. The regulatory rationale for each of the risk management measures outlined below is discussed immediately after this list of required risk management measures.

a. Agricultural Use Exposure Reduction Measures

For agricultural use, the following measures are required, in addition to the existing label requirements to address risks of concern.

Dietary (Drinking Water)

- Require the following statement:
 - "ANY USE OF THIS PRODUCT IN AN AREA WHERE USE IS PROHIBITED IS A VIOLATION OF FEDERAL LAW. Before using this product, you must consult the Atrazine Watershed Information Center (AWIC) to determine whether the use of this product is prohibited in your watershed. AWIC can be accessed through [website], [mailing address] or [1-800-toll-free number]. If use of this product is prohibited in your watershed, you may return this product to your point of purchase or contact [insert name of registrant] for a refund."

Occupational - Agricultural Uses

- 1) Mixing/Loading Scenarios:
- a) Liquids:
 - require closed systems for mixing/loading to support aerial applications at greater than 3 lb ai/A
 - all mixers/loaders (including using engineering controls) must wear longsleeve shirt, long pants, shoes, socks, chemical-resistant gloves and chemical resistant apron
- b) Wettable Powders:
 - require water-soluble packaging for all WP formulations
 - all mixers/loaders must wear long-sleeve shirt, long pants, shoes, socks, chemical-resistant gloves and chemical resistant apron
- c) Dry Flowables:
 - water-soluble packaging optional
 - if in water-soluble packaging, all mixers/loaders must wear long-sleeve shirt, long pants, shoes, socks, chemical-resistant gloves and chemical resistant apron
 - if not in water-soluble packaging, mixers/loaders must wear coveralls over long-sleeve shirt and long pants, chemical-resistant gloves, chemical-resistant footwear, and chemical-resistant apron plus a NIOSH-approved dust/mist filtering respirator with any N, R, P, or HE filter.
 - if not in water-soluble packaging, aerial application is prohibited.
- d) Granular Products:
 - Loaders must wear long-sleeve shirt, long pants, shoes, and socks.

2) Applicator and Flagger Scenarios:

- a) Pilots must use enclosed cockpits (40 CFR 170.240(d)(6)) for aerial applications.
- b) Human flaggers supporting aerial applications must used enclosed cabs (40 CFR 170.240(d)(5)).
- c) Applicators applying sprays with motorized ground equipment (i.e., groundboom or rights-of-way sprayers) must wear long-sleeve shirt, long pants, shoes, socks, and chemical-resistant gloves.
- d) Applicators applying granular products or impregnated fertilizer must wear longsleeve shirt, long pants, shoes, and socks.
 - Restrict the impregnation of bulk fertilizer to commercial facilities (prohibit on-farm impregnation)
 - Restrict the impregnation of dry bulk fertilizer to 500 tons per day for no more than 30 days per calender year per facility
- e) Reduce the maximum application rate for handlers applying liquids with rightsof-way sprayers to 1.0 lb ai/A
- f) Reduce the maximum application rate for liquids for chemical follow to 2.25 lb ai/A
- g) Require a 60-day PHI for field corn forage uses
- h) Require a 45-day PHI for sweet corn forage uses
- i) Require a 60-day PHI for pre-emergent uses and a 45-day PHI for postemergent

sorghum forage uses

b. Non-Agricultural Use Exposure Reduction Measures

1) Non-Agricultural Products including Lawns and Turf (not Sod Farms)

- a) Require that all wettable powder products be packaged in water soluble bags.
- b) Granular formulations: loaders, applicators, and other handlers must wear longsleeve shirt, long pants, shoes, and socks.
- c) Liquid, wettable powder, dry flowable (water-dispersible granule) formulations:
 - applicators using spray equipment mounted on their backs must wear coveralls worn over long sleeved shirt and long pants, chemical-resistant gloves and chemical-resistant footwear plus socks.
 - all other mixers, loaders, applicators, and other handlers must wear longsleeved shirt and long pants, shoes and socks, and chemical resistant gloves.
 - Reduce the maximum single application rate for liquid formulations on residential lawns and turf to 1 lb ai/A from 2 lb ai/A (liquid products containing >4% ai are restricted use)
- d) Require that granular lawn products be watered in

2) Residential

- z) Restrict the application of granular lawn products when using hand-held devices (e.g. belly grinder) to spot applications only.
- aa) Prohibit applications of granular lawn products by hand
- bb) Reduce the maximum single application rate for liquid formulations on residential lawns and turf to 1 lb ai/A from 2 lb ai/A (liquid products containing >4% ai are restricted use)
- cc) Require that granular lawn products be watered in

c. Label Harmonization

As described in Section II under the discussion of the regulatory history of atrazine, a number of risk mitigation measures have been instituted over the years to address exposure to atrazine. While most product labels have adopted these measures there are some that continue to reflect use patterns prior to the implementation of these risk mitigation measures. The listing below identifies measures that are not fully implemented on all current product labels. All of these measures, in addition to new label requirements as defined by this IRED, are needed on atrazine labels in order for products to be eligible for reregistration.

- Atrazine products containing >4% active ingredient must be classified as restricted use
- Maximum broadcast application rates for corn and sorghum must be as follows:
 - a) Where both a preemergence and a postemergence are used, the total atrazine

applied in the preemergence PLUS postemergence treatment cannot exceed 2.5 lb ai/A/calendar year.

- b) 2.0 lb ai/A as a single preemergence application on soils that are not highly erodible or on highly erodible soils if at least 30% of the soil is covered with plant residues; or
- c) 1.6 lb ai/A as a single preemergence application on highly erodible soils if <30% of the surface is covered with plant residues; or
- d) 2.0 lb ai/A if only applied postemergence.
- e) For all tank mixtures and sequential treatment of products containing atrazine, the total lbs. a.i. of atrazine applied cannot exceed the application limits described above.
- Maximum application rates per crop must be as follows (single application and annual maximum):
 - a) Conifers 4 lb ai/A; 4 lb ai/A per year maximum
 - b) Sugarcane 4 lb ai/A (single application);10 lb ai/A per year maximum
 - c) Rights-of-Way/Roadsides Treatment 1 lb ai/A; 1 application per year
 - d) Guava 4 lb ai/A (single application); 8 lb ai/A per year maximum
 - e) Macadamia Nuts 4 lb ai/A (single application); 8 lb ai/A per year maximum
 - f) Conservation Reserve Program (CRP) 2 lb ai/A
 - g) Chemical Fallow 2.25 lbs ai/Aa
- Delete all uses for total vegetation control on non-cropland areas. This does not include rights-of-way/roadsides or CRP
- Prohibit use in chemigation systems
- Prohibit use, and mixing and loading within 50 feet of all wells, including abandoned wells, drainage wells, and sink holes
- Prohibit mixing and loading within 50 feet of intermittent streams and rivers, natural or impounded lakes and reservoirs.
- Prohibit application within 66 feet of the points where field surface water runoff enters perennial or intermittent streams and rivers. If land is highly erodible, the buffer must be planted to the crop or seeded with grass or other suitable crop.
- Prohibit application within 200 feet of natural or impounded lakes and reservoirs.
- Require that one of the following restrictions be used in applying Atrazine to tiledoutletted fields containing standpipes
 - a) Do not apply within 66 feet of standpipes in tile-outletted fields
 - b) Apply this product to the entire tile-outletted field and immediately incorporate it to a depth of 2-3 inches in the entire field
 - c) Apply this product to the entire tile-outletted field under a no-till practice only when a high crop residue management practice is practiced. High crop residue management is described as a crop management practice where little or no crop residue is removed from the field during and after crop harvest.

D. Regulatory Rationale

The following is a summary of the rationale for managing risks associated with the current uses of atrazine. The Agency has discussed these measures with the technical registrants

US EPA ARCHIVE DOCUMENT

and in all cases the registrants have agreed to the measures presented here. Where labeling revisions are warranted, specific language is set forth in the summary tables of Section V of this document.

1. Human Health Risk Mitigation

a. Dietary (Food)

The acute and chronic dietary risks from atrazine residues on food are well below the Agency's level of concern at the 99.9th percentile of exposure. Therefore, no mitigation measures are necessary at this time.

b. Dietary (Drinking Water)

1) Community Water Systems (CWS)

The Agency has identified 34 surface water CWS with levels of atrazine that have exceeded the Agency's current DWLOC (12.5 ppb as a 90-day average) at least once since frequent monitoring for atrazine began in 1993. The 12.5 DWLOC was used as a screening tool to identify specific CWS that were of concern to the Agency. The registrant has since added 3 CWS to the list of CWS of concern. These 37 CWS have been targeted for intensive monitoring, risk mitigation, and probabilistic risk assessments.

The 12.5 ppb DWLOC was also used as a tool to establish a trigger value based on SDWA compliance monitoring data by which CWS with potential high-end seasonal exposures could be identified in the future. The Agency considered available data from SDWA compliance monitoring and determined that a trigger value of 2.6 TCT provides an appropriate early warning. If annual average concentrations of atrazine and its chlorinated metabolites (total chlorotriazines - TCT) in a surface water CWS reach 2.6 ppb, this triggers weekly (during the use season) and biweekly (during the remainder of the year) monitoring of that CWS for TCT concentrations.

The 12.5 ppb DWLOC is based on an endpoint of 1.8 mg/kg/day and a 1000 fold uncertainty factor. The uncertainty factor includes a 10x factor for interspecies variation; a 10x factor for intraspecies variability, and a 10x FQPA Safety Factor. The 10x FQPA safety factor was applied to account for the uncertainties associated with atrazine's toxic effects on the developing child and the extent and magnitude of exposure to atrazine in drinking water.

Community water systems found to be potentially impaired by atrazine, as predicted by exceedences of an annual average of 2.6 ppb based on SDWA compliance monitoring data, and the 37 CWS identified above will be subject to an intensive monitoring program that includes weekly sampling for atrazine during the use season and biweekly sampling for atrazine during the remainder of the year. This monitoring program will determine the maximum 90-day average TCT concentration with sufficient accuracy to allow removal of that portion of the 10x FQPA safety factor associated with residual uncertainties regarding the extent and magnitude of

drinking water exposure, thereby reducing the 10x FQPA safety factor to 3x for the risk assessments conducted in those community water systems for which there is available, reliable drinking water exposure data.

For those specific CWS undergoing or preparing to undergo intensive monitoring, uncertainties regarding the extent and magnitude of exposure to chlorotriazines no longer exist; this supports a reduction in the FQPA safety factor to 3x for those CWS. Based on this, the Agency has recalculated the DWLOC using a total risk assessment 300x uncertainty factor for those CWS currently undergoing or targeted for future intensive monitoring. For these CWS, the DWLOC becomes 37.5 ppb for total chlorotriazines based on an endpoint of 1.8 mg/kg/day, and a 300x uncertainty factor reflecting a 10x factor for interspecies variation, a 10x factor for intraspecies variability, and a 3x FQPA safety factor. The 3x FQPA safety factor reflects residual uncertainties associated with atrazine's toxic effects on the developing child only. For CWS without intensive monitoring as described above, the screening level DWLOC remains 12.5 ppb for total chlorotriazines.

As such, the Agency is establishing 37.5 ppb TCT (as a 90-day average) as a performance standard that must be met in CWS that are being intensively monitored. The Agency believes that its usual mitigation measures for pesticide chemicals (e.g., reduction in label rates, labeled use restrictions, etc.) are not appropriate in the case of atrazine because of the nature of the chemical. Exceedences do not appear to be linked to nation-wide use practices that can be amended on the label. Based on atrazine monitoring data, the Agency's risk assessment for atrazine has determined that drinking water risks from atrazine use are localized problems and, as such, lend themselves to a localized mitigation plan. In addition, this localized approach is consistent with the conclusions from a February 2000 FIFRA Scientific Advisory Panel meeting (Partial Report May 25, 2000. Report Number 2000-01). OPP's approach is also consistent with the intent of the Agency's recent January 2003 Water Quality Trading Policy that encourages solutions within watersheds, provides incentives and encourages actions, and provides flexibility to meet local challenges and accountability to ensure improvements.

The Agency's approach to these CWS is as follows:

- For 2 CWS that were identified in the screening-level assessment and are of concern to the Agency, Shipman, IL, and Hettick, IL, the Agency understands that these CWS will no longer be using the reservoir that has shown unacceptable atrazine levels as a water source for the community in the future.
- For 8 CWS that were identified in the screening-level assessment (see Appendix H for a site-specific listing), the Agency is requiring frequent monitoring data. If an exceedence of 37.5 is detected in raw drinking water (pre-treatment) in any of these watersheds, further use of atrazine will be prohibited in that watershed.
 - For all remaining CWS, the Agency is requiring frequent monitoring data if an annual average of 2.6 total chlorotriazines is triggered through SDWA compliance monitoring data. If an exceedence is detected in raw drinking water (pre-treatment) twice in any

watershed, further atrazine use will be prohibited in that watershed.

Frequent monitoring will continue annually for five years (minimum) and may only cease if no 90-day rolling average exceeds the performance standard of 37.5 ppb total chlorotriazines during the five year period.

Based on the monitoring programs, the registrants are being required to submit annual reports to the Agency that include the results of that year's analysis. Atrazine registrants must notify EPA in writing of any raw water exceedance within 30 days of date of the last water sample included in that result.

As part of the Agency's mitigation program for atrazine, registrants are also being required to submit to the Agency written mitigation plans for the 8 CWS of concern (or any other CWS that has an exceedence in the future) describing mitigation measures to be implemented and a strategy for communication with growers within the watershed and quarterly progress reports describing the measures taken during that quarter in each CWS.

An important element of the mitigation program is the ability of the Agency to quickly prohibit use of atrazine in watersheds that have exceeded the applicable performance standard. This is possible because the mitigation program includes a mechanism that does not require lengthy administrative proceeding before the use prohibition goes into effect. The principle registrants of atrazine have agreed to this measure. Without this voluntary measure, it may have been necessary for the Agency to seek immediate cancellation of atrazine.

In order to implement this agreement, if the product contains directions for use other than for reformulation and contains greater than 4% atrazine active ingredient, the label must include all of the following statements:

"ANY USE OF THIS PRODUCT IN AN AREA WHERE USE IS PROHIBITED IS A VIOLATION OF FEDERAL LAW. Before using this product, you must consult the Atrazine Watershed Information Center (AWIC) to determine whether the use of this product is prohibited in your watershed. AWIC can be accessed through [website], [mailing address] or [1-800-toll-free number]. If use of this product is prohibited in your watershed, you may return this product to your point of purchase or contact [insert name of registrant] for a refund." The atrazine registrants will establish an Atrazine Watershed Information Center (AWIC)

- that:
- will provide detailed information on what Watershed Areas have become subject to a prohibition on Atrazine use. Only information approved by EPA may be included in the AWIC.
- shall be accessible to the public daily, including weekends and holidays, through a toll-free telephone number available 24 hours a day and seven days a week, a World Wide Web site, and a regular mailing address. Contact information for the AWIC will be included on all Atrazine product labels.
- shall be updated to include any Watershed Areas for which use is prohibited
- will prominently display information regarding use prohibitions in a manner that is simple and convenient for users to access and understand.

This localized drinking water mitigation program will ensure that mitigation actions taken in watersheds of concern are providing results in raw drinking water and will prevent any exceedences from occurring or going undetected in the future. The Memorandum of Agreement with the atrazine technical registrants provides further details on this mitigation plan, including the specifics of the monitoring programs being established and the mechanism by which use prohibitions will be implemented.

This program allows the Agency to make a safety finding because future exceedences in raw water trigger use prohibitions in the watershed of concern. Since this exceedence is in raw, not finished water, treatment of water by CWS operators to meet the MCL may prevent actual exposures above the Agency's level of concern. In addition, the Agency does not expect future exceedences to occur because of the responsible use programs being implemented and coordinated by the registrants as product stewardship. The Agency feels that the risk of use prohibitions is a strong incentive for atrazine users and the registrants to make every effort to prevent exceedences. The performance standard approach makes the prevention of atrazine water contamination the responsibility of the user, but will not result in unacceptable risks.

2) Rural Drinking Water Wells

To confirm that rural drinking water wells will not have atrazine levels that exceed the Agency's level of concern, the Agency will be requiring that the registrant(s) develop and conduct a program for the monitoring of rural wells. The Agency is requiring that the registrants define a protocol for monitoring total chlorotriazine levels in rural wells by **April 30, 2003.** The protocol must identify the number of wells to be sampled, the frequency of monitoring, the duration and timing of monitoring, and the timing of submission of data. The Agency may take appropriate regulatory action if EPA determines that additional label restrictions for the protection of rural drinking water wells are necessary.

b. Residential Risk Mitigation

1) Residential Handler Risk

Residential handler risks were considered for homeowners who mix, load, and apply atrazine products to home lawns.

One residential handler risk scenario was above the Agency's level of concern, the broadcast application of granular formulations with a bellygrinder. To address these concerns, the following risk mitigation measures are needed in order for EPA to conclude that atrazine products are eligible for reregistration:

- Restrict the application of granular lawn products when using hand-held devices to spot applications only.
- Prohibit applications of granular lawn products by hand.

2) Residential Post-Application Risk

Residential post-application risks were considered for individuals that reenter lawns and golf courses treated with atrazine.

The Agency has risk concerns for incidental oral exposures in children to atrazine residues. For lawns treated with liquid formulations of atrazine, the Agency has concerns for hand-to-mouth exposures alone (MOE = 210) and for combined oral routes of exposure (hand-to-mouth, turfgrass & object mouthing, and ingestion of soil; MOE = 200). For lawns treated with granular formulations, the Agency has concerns for incidental ingestion of granules.

To address those concerns, the risk mitigation measures listed below are necessary. These mitigation measures make it possible for EPA to conclude that atrazine products are eligible for reregistration. The mitigation measures are as follows:

- Reduce the maximum 1 time application rate for liquid formulations on lawns and turf to 1 lb ai/A from 2 lb ai/A.
- Require that granular lawn products be watered in.

At the 1 lb ai/A rate for liquid formulations of atrazine, the short term MOE for hand-tomouth and combined incidental oral exposures becomes acceptable individually (420 and 370, respectively). If granular lawn products are watered in, the short-term MOE for ingestion of granules is no longer appropriate since the individual granules will no longer be present in the turf.

c. Aggregate Risk Mitigation

The Agency's aggregate risk assessment for atrazine is based on exposure estimates for drinking water based on monitoring data and residential exposure estimates based on chemical-specific exposure data.

1) Acute Exposure

Acute aggregate exposure estimates for atrazine are the same as those presented for acute drinking water risks because the Agency does not believe that high-end exposures through food, drinking water, and residential uses will all occur on the same day. Since acute drinking water risks do not exceed the Agency's level of concern, acute aggregate risk is also acceptable, and no mitigation measures are necessary.

2) Intermediate-Term and Chronic Exposure

The aggregate risk assessment for intermediate-term and chronic exposures to atrazine and the chlorinated metabolites combines estimates of high-end seasonal or long-term average exposures to atrazine in drinking water with long-term average exposures in food. Neither intermediate-term nor long-term exposures are expected to occur in or around the home from residential uses of atrazine. Therefore, the intermediate-term and chronic aggregate risk for atrazine is the same as the intermediate-term and chronic drinking water risk. As such, mitigation measures presented above to address intermediate-term and chronic drinking water risk also mitigates the intermediate-term and chronic aggregate risk. No additional mitigation measures are needed to specifically address aggregate risk.

3) Short-Term Aggregate Exposure

The short-term (1-30 days) aggregate risk assessment combines short-term residential exposures with short-term drinking water exposures. If the short-term DWLOC is less than the measured average concentrations in surface water and groundwater, there is a risk of concern. Short-term aggregate risk estimates that include residential exposures to atrazine are only applicable for those regions of the United States where atrazine is used on turf, the Southeast (including Florida).

For adult handlers applying granular formulations of atrazine via bellygrinder, both residential exposures alone and aggregate exposures are of concern. To address the residential concern, the Agency has concluded that the application of granular lawn products using handheld devices should be limited to spot applications only.

For adults exposed to atrazine after it has been applied to turf or home lawns, neither residential exposure alone nor aggregate exposures are of concern. Therefore, no mitigation is needed.

For children exposure to atrazine after it has been applied in liquid formulations to home lawns, aggregate exposure is of concern. Combined dermal and incidental oral exposures for toddlers result in a MOE of 180 for toddlers' aggregate dermal and oral exposures, based on the 1 lb ai/A rate necessary to address residential concerns alone. Since this is above the Agency's level of concern, the short-term DWLOC is zero for aggregated exposures from liquid formulations across multiple exposure routes for toddlers. However, since the lawn use of atrazine is limited to the Southwest and Florida and the CWS of concern, with the exception of

Iberville, LA, are in the Midwest, it is highly unlikely that home lawn exposure will occur at the same time as high-end drinking water exposures.

For children exposed to atrazine after it has been applied as a granular formulation to home lawns, and watered-in, aggregate exposure is not of concern. Toddlers' risk estimates from combined pathways for incidental oral exposures based on granular formulations result in an MOE of 730 and thus do not exceed the Agency's level of concern. Toddlers' risk estimates from dermal exposures based on granular formulations also do not exceed HED's levels of concern (MOE = 690 if <u>not</u> watered-in and 2000 if granules are watered-in immediately after application). For most CWS, short-term DWLOCs for toddlers' post application aggregate exposures do not exceed the Agency's level of concern for granular formulations watered-in after application to turf. Thus, mitigation measures required for residential concerns alone (i.e, requiring that granular formulations be watered-in) mitigate any aggregate post-application concerns. In addition, the few CWS that have 30-day average concentrations above the DWLOC are primarily located in the Midwest (outside of atrazine turf use areas), with the exception of Iberville, Louisiana.

Further, all of the CWS with 30-day average concentrations above the DWLOC have also been identified under the intermediate-term drinking water risk assessment as of concern, including Iberville, Lousiana. As such, levels of atrazine in all of these CWS are being mitigated through the Agency's localized atrazine drinking water mitigation plan described above.

d. Occupational Risk Mitigation

It is the Agency's policy to mitigation occupational risks to the greatest extent necessary and feasible with personal protective equipment and engineering controls. In managing these risks, EPA must take into account the economic, social, and environmental costs and benefits of the pesticide's use. A wide range of factors is considered in making risk management decisions for worker risks. These factors include, in addition to the calculated MOEs, incident data, the nature and severity of adverse effect, uncertainties in the risk assessment, the cost, availability and relative risk of alternatives, importance of the chemical in integrated pest management (IPM) programs, and other similar factors.

Agricultural Handlers

Several occupational handler scenarios are not of concern at baseline levels of PPE (longsleeved shirt and long pants, shoes and socks); therefore, no risk mitigation is necessary at this time in order for these uses to remain eligible for reregistration. These scenarios are described in Section III.A.4. of this document.

For the remaining agricultural handlers scenarios, occupational risks are of concern when considering the use of PPE or engineering controls (the maximum feasible mitigation). To reduce mixer/loader and applicator risk so that atrazine products are eligible for reregistration, risk mitigation measures are necessary. These mitigation measures are explained in more detail below.

1) Mixing/Loading Scenarios

Liquids:

- require closed systems for mixing/loading to support aerial applications at greater than 3 lb ai/A
- all mixers/loaders (including using engineering controls) must wear longsleeve shirt, long pants, shoes, socks, chemical-resistant gloves and chemical resistant apron

Wettable Powders:

- require water-soluble packaging for all WP formulations
- all mixers/loaders must wear long-sleeve shirt, long pants, shoes, socks, chemical-resistant gloves and chemical resistant apron

Dry Flowables:

- water-soluble packaging optional
- if in water-soluble packaging, all mixers/loaders must wear long-sleeve shirt, long pants, shoes, socks, chemical-resistant gloves and chemical resistant apron
- if not in water-soluble packaging, mixers/loaders must wear coveralls over long-sleeve shirt and long pants, chemical-resistant gloves, chemical-resistant footwear, and chemical-resistant apron plus a NIOSH-approved dust/mist filtering respirator with any N, R, P, or HE filter.
- if not in water-soluble packaging, aerial application is prohibited.

Granular Products:

Loaders must wear long-sleeve shirt, long pants, shoes, and socks.

2) Applicator and Flagger Scenarios

- Pilots must use enclosed cockpits (40 CFR 170.240(d)(6)) for aerial applications.
- Human flaggers supporting aerial applications must used enclosed cabs (40 CFR 170.240(d)(5)).
- Applicators applying sprays with motorized ground equipment (i.e., groundboom or rights-of-way sprayers) must wear long-sleeve shirt, long pants, shoes, socks, and chemical-resistant gloves.
- Applicators applying granular products or impregnated fertilizer must wear long-sleeve shirt, long pants, shoes, and socks.

In Addition:

- Restrict the impregnation of bulk fertilizer to commercial facilities (prohibit on-farm impregnation)
- Restrict the impregnation of dry bulk fertilizer to 500 tons per day for no

more than 30 days per calender year per facility

- Reduce the maximum application rate for handlers applying liquids with rights-of-way sprayers to 1.0 lb ai/A
- Reduce the maximum application rate for liquids for chemical follow to 2.25 lb ai/A
- Require a 60-day PHI for field corn forage uses
- Require a 45-day PHI for sweet corn forage uses
- Require a 60-day PHI for preemergent uses and a 45-day PHI for postemergent sorghum forage uses

3. Non-Agricultural Products including Lawns and Turf (not Sod Farms)

For turf and LCO uses of atrazine, handler risks are of concern, but can be mitigated through the use of PPE. To reduce this risk so that atrazine turf products are eligible for reregistration, risk mitigation measures are necessary. These mitigation measures are explained in more detail below.

- Require that all wettable powder products be packaged in water soluble bags.
- Granular formulations: loaders, applicators, and other handlers must wear long-sleeve shirt, long pants, shoes, and socks.
- Liquid, wettable powder, dry flowable (water-dispersible granule) formulations:
 - applicators using spray equipment mounted on their backs must wear coveralls worn over long sleeved shirt and long pants, chemical-resistant gloves and chemical-resistant footwear plus socks.
 - all other mixers, loaders, applicators, and other handlers must wear long-sleeved shirt and long pants, shoes and socks, and chemical resistant gloves.
- Reduce the maximum single application rate for liquid formulations on residential lawns and turf to 1 lb ai/A from 2 lb ai/A (liquid products containing >4% ai are restricted use)
- Require that granular lawn products be watered in

Post-Application Occupational Risk

The Agency has not identified any post-application occupational risks from atrazine. Therefore, no mitigation measures are needed at this time.

2. Environmental Risk Mitigation

The Agency has ecological risk concerns from the use of atrazine. The Agency has

identified the potential for community-level and population-level risk to aquatic ecosystems at concentrations of atrazine from 10 to 20 ppb.

To mitigate these ecological risks to aquatic communities, the Agency is requiring that atrazine registrants, in consultation with EPA, develop a program under which the registrants monitor for atrazine concentrations and mitigate environmental exposures if EPA determines that mitigation is necessary. The program will focus on watershed impacts of atrazine use.

The program will include an appropriate ecological level of concern (LOC), including for endangered species, identified by EPA; development of a protocol for a monitoring program that specifies the frequency, location, and timing of sampling, as well as an appropriate coordination with TMDL programs; triggers for mitigation measures; and description of mitigation measures that will be taken if triggers are exceeded. This monitoring and mitigation program would be designed, conducted and implemented on a tiered watershed level and must be consistent with existing state and federal water quality programs.

The requirement that this process be established is presented in the Memorandum of Agreement between the Agency and the atrazine technical registrants. Per the Memorandum of Agreement, the Agency and the registrants must reach an agreement on the ecological monitoring program by April 30, 2003. If an agreement has not been reached, the Agency will identify any requirements the Agency deems necessary in the October 31, 2003, revision to the Atrazine IRED. The establishment of a process to address ecological risks on a watershed basis allows the Agency to conclude that atrazine products are eligible for reregistration.

3. Other Labeling

Other use and safety information need to be placed on the labeling of all end-use products containing atrazine, in addition to the mitigation measures listed above and other existing label requirements. For the specific labeling statements, refer to Section V of this document.

The Agency reserves the right to require additional label amendment to mitigate risks from triazine residues. Any further amendments will be discussed in the triazine cumulative decision.

a. Endangered Species Statement

The Agency has developed the Endangered Species Protection Program to identify pesticides whose use may cause adverse impacts on endangered and threatened species, and to implement mitigation measures that address these impacts. The Endangered Species Act requires federal agencies to ensure that their actions are not likely to jeopardize listed species or adversely modify designated critical habitat. To analyze the potential of registered pesticide uses to affect any particular species, EPA puts basic toxicity and exposure data developed for IREDs into context for individual listed species and their locations by evaluating important ecological parameters, pesticide use information, the geographic relationship between specific pesticide uses and species locations, and biological requirements and behavioral aspects of the particular species. This analysis will take into consideration any regulatory changes recommended in this IRED that are being implemented at this time. A determination that there is a likelihood of potential impact to a listed species may result in limitations on use of the pesticide, other measures to mitigate any potential impact, or consultations with the Fish and Wildlife Service and/or the National Marine Fisheries Service as necessary.

The Endangered Species Protection Program as described in a *Federal Register* notice (54 *FR* 27984) is currently being implemented on an interim basis. As part of the interim program, the Agency has developed County Specific Pamphlets that articulate many of the specific measures outlined in the Biological Opinions issued to date. The Pamphlets are available for voluntary use by pesticide applicators on EPA's website at www.epa.gov/espp. A final Endangered Species Protection Program, which may be altered from the interim program, is scheduled to be proposed for public comment in the *Federal Register* before the end of 2001.

b. Spray Drift Management

The Agency is currently working with stakeholders to develop appropriate generic label statements to address spray drift risk. Once this process has been completed, atrazine product labels will need to be revised to include this additional language.

US EPA ARCHIVE DOCUMENT

V. What Registrants Need to Do

In order to be eligible for reregistration, registrants need to implement the risk mitigation measures outlined in Section IV and V, which include, among other things, submission of the following:

<u>For products containing atrazine</u>, registrants need to submit the following items for each product within eight months of the date of the PDCI:

- (1) an application for reregistration (EPA Form 8570-1, filled in, with a description on the application, such as, "Responding to Interim Reregistration Eligibility Decision" document);
- (2) five copies of the draft label incorporating all label amendments outlined in Table 17 of this document;
- (3) responses to the generic and/or product specific Data Call-Ins (DCIs) as instructed in the enclosed DCIs;
- (4) two copies of the Confidential Statement of Formula (CSF); and
- (5) a certification with respect to data compensation requirements.

Note that the first set of required responses for the product-specific DCI is due 90 days from the receipt of the DCI. The second set of required responses is due eight months from the date of the DCI. For questions about product reregistration and/or the product-specific DCI, please contact Bonnie Adler at (703) 308-8523.

For the generic DCI, the following items are due:

- (1) DCI response form, due 90 days from the receipt of the DCI;
- (2) Registrant response form, due 90 days from the receipt of the DCI; and
- (3) the actual generic data in response to the DCI.

A. Manufacturing Use Products

1. Additional Generic Data Requirements

The generic data base supporting the reregistration of atrazine for the above eligible uses has been reviewed and determined to be substantially complete. The following data gaps remain:

Product Chemistry Data

Product-Specific Product Chemistry data requirements have not been fulfilled (Series 830). Please see Product-Specific Data Call-Ins.

Non-Guideline Study	28-day inhalation toxicity study measuring LH surge and
Non-Guideline Study	estrus cycle parameters Assessment of CNS alterations after atrazine exposure (recommended)

Occupational Data

None

Environmental Fate and Ecological Effects Data

<i>OPPTS 850.2100 (71-1(a))</i>	Acute Avian Oral - Northern Quail (3 major degradates)
<i>OPPTS 850.1075 (72-1(a))</i>	Acute Fish Toxicity Bluegill (major degradate)
<i>OPPTS 850.1075 (72-1(c))</i>	Acute Fish Toxicity Rainbow Trout (major degradate)
<i>OPPTS 850.1010 (72-2(a))</i>	Acute Aquatic Invertebrate Toxicity (major degradate)
<i>OPPTS 850.1025 (72-3(a))</i>	Acute Estuarine/Marine Fish Toxicity (major degradate)
<i>OPPTS 850.1025 (72-3(b))</i>	Acute Estuarine/Marine Mollusk Toxicity (TGAI and
	major degradate)
<i>OPPTS 850.1025 (72-3(c))</i>	Acute Estuarine/Marine Shrimp Toxicity (major degradate)
<i>OPPTS 850.1400 (72-4(a))</i>	Early Life-Stage Fish (Marine) (TGAI)
<i>OPPTS 850.1350 (72-4(b))</i>	Life-Cycle Marine Invertebrate (TGAI)
OPPTS 835.4300 (162-4)	Aerobic Aquatic Metabolism - Lab
OPPTS 835.1410 (163-2)	Volatility (Lab)
OPPTS 850.1950 (165-5)	Accumulation in Aquatic Non-Target Organisms
OPPTS 840.1100 (201-1)	Spray Drift - Droplet Size Spectrum
OPPTS 840.1200 (202-1)	Spray Drift - Drift Field Evaluation
OPPTS 830.7050 (NA)	UV/Visible Absorption

Residue Chemistry Data

OPPTS 860.1380 (171-4e)	Storage Stability
OPPTS 860.1900 (165-2)	Field Rotational Crop Study (in review)
OPPTS 860.1500 (171-4k)	Crop Field Trials - Crop Group 17
OPPTS 860.1360 (171-4)	Multi-Residue Method

Other Data Requirements

Non-Guideline Study	Rural Well Monitoring Program
	(see MOA & DCI for details)
Non-Guideline Study	Surface Water CWS Monitoring Program
	(see MOA & DCI for details)
Non-Guideline Study	Ecological Monitoring and Mitigation Program
	(see MOA & DCI for details - specifics to be negotiated)

2. Labeling for Manufacturing Use Products

To remain in compliance with FIFRA, manufacturing use product (MUP) labeling should be revised to comply with all current EPA regulations, PR Notices and applicable policies. The MP labeling should bear the labeling contained in Table 17 at the end of this section.

B. End-Use Products

1. Additional Product-Specific Data Requirements

Section 4(g)(2)(B) of FIFRA calls for the Agency to obtain any needed product-specific data regarding the pesticide after a determination of eligibility has been made. Registrants must review previous data submissions to ensure that they meet current EPA acceptance criteria and if not, commit to conduct new studies. If a registrant believes that previously submitted data meet current testing standards, then the study MRID numbers should be cited according to the instructions in the Requirement Status and Registrants Response Form provided for each product.

A product-specific data call-in, outlining specific data requirements, accompanies this interim RED.

2. Labeling for End-Use Products

Labeling changes are necessary to implement the mitigation measures outlined in Section IV above. Specific language to incorporate these changes is specified in the Table 28 at the end of this section.

C. Existing Stocks

Registrants may generally distribute and sell products bearing old labels/labeling for 26 months from the date of the issuance of this Interim Reregistration Eligibility Decision document. Persons other than the registrant may generally distribute or sell such products for 50 months from the date of the issuance of this interim RED. However, existing stocks time frames will be established case-by-case, depending on the number of products involved, the number of label changes, and other factors. Refer to "Existing Stocks of Pesticide Products; Statement of Policy"; Federal Register, Volume 56, No. 123, June 26, 1991.

The Agency has determined that registrants may not distribute or sell atrazine products bearing old labels/labeling after the date of cancellation or amendment unless it is for the purpose of relabeling in accordance with the terms of this interim RED. Persons other than the registrants may distribute or sell such products until October 1, 2003. Registrants and persons other than the registrants remain obligated to meet pre-existing label requirements and existing stocks requirements applicable to products they sell or distribute. In addition, EPA has agreed to allow the atrazine technical registrants to re-label cancelled products with new provisions or to create supplemental labeling that will allow distributors to provide new label language to

purchasers of atrazine products with labels that do not comply with this interim RED.

D. Labeling Changes Summary Table

In order to be eligible for reregistration, amend all product labels to incorporate the risk mitigation measures outlined in Section IV. Table 29 below describes how language on the labels should be amended.

Labeling Changes Summary Table

In order to be eligible for reregistration, amend all product labels to incorporate the risk mitigation measures outlined in Section IV. The following table describes how language on the labels should be amended.

Table 29: Summary of Labeling Changes for Atrazine				
Description	Amended Labeling Language	Placement on Label		
	Manufacturing Use Products			
One of these statements may be added to a label to allow reformulation of the product for a specific use or all additional uses supported by a formulator or user group	 "Only for formulation into an <i>herbicide</i> for the following use(s) [fill blank only with those uses that are being supported by MP registrant]." Note: In addition to the uses previously classified as restricted use, all uses of products containing >4% active ingredient must be classified as restricted use. Uses for total vegetation control on non-cropland areas (not including rights-of-ways, roadsides, or CRP programs) are cancelled. Uses on pineapple, rangeland, and proso millet are also cancelled. Technical and end-use product labels must be revised to delete all references to and use-directions for these cancelled use patterns. 	Directions for Use		
	 "This product may be used to formulate products for specific use(s) not listed on the MP label if the formulator, user group, or grower has complied with U.S. EPA submission requirements regarding support of such use(s)." "This product may be used to formulate products for any additional use(s) not listed on the MP label if the formulator, user group, or grower has complied with U.S. EPA submission requirements regarding support of such use(s)." 	Directions for Use		
Text required from Memorandum of Agreement	"This product may not be reformulated or repackaged into another product unless the registration of the reformulated or repackaged product was either granted or amended after March 15, 2004, so as to be consistent with the terms and conditions set forth in the Atrazine January 31, 2003 Interim Reregistration Eligibility Document (IRED)."	Directions for Use		
Description	Amended Labeling Language	Placement on Label		
---	--	---		
Text required from Memorandum of Agreement	No product (other than products containing 4% or less atrazine active ingredient) may be formulated or repackaged from this product unless the formulated repackaged product bears a label including all of the following statements:	Directions for Use		
	The following language must be prominently displayed in the DIRECTIONS FOR USE on the label:			
	"ANY USE OF THIS PRODUCT IN AN AREA WHERE USE IS PROHIBITED IS A VIOLATION OF FEDERAL LAW. Before using this product, you must consult the Atrazine Watershed Information Center (AWIC) to determine whether the use of this product is prohibited in your watershed. AWIC can be accessed through www.atrazine-watershed.info, or 1-866-365-3014. If use of this product is prohibited in your watershed, you may return this product to your point of purchase or contact [insert name of registrant] for a refund."			
	"No product containing 4% or less atrazine active ingredient may be formulated or repackaged from this product unless the registration of the resulting product includes the following terms and conditions: The registrant of this product shall immediately: i) cease all distribution and sale to any retailer or entity distributing or selling such product to any retailer located within all counties containing any portion of the Watershed Area listed in the AWIC; ii) ensure the removal of such Atrazine product from the shelves of any retailer located within all counties containing any portion of any Watershed Area listed in the AWIC; and iii) repurchase any such Atrazine product from any of the purchasers described above. In addition, such Registrant shall consult with the State(s) in which such counties are located to determine whether additional territory shall be included in the area to which these requirements will apply. If the State(s) determine that a larger area is warranted, the Registrant shall within 10 days of such determination notify the Director of EPA's Special Review and Reregistration Division (SRRD) (7508C), Office of Pesticide Programs, of the specific boundaries within which the stop sale, removal, and repurchase shall take place."			
Environmental Hazards	"Do not discharge effluent containing this product into lakes, streams, ponds, estuaries, oceans, or other waters unless in accordance with the requirements of a National Pollutant Discharge Elimination System (NPDES) permit and the permitting authority has been notified in writing prior to discharge. Do not discharge effluent containing this product to sewer systems without previously notifying the local sewage treatment plant authority. For guidance, contact your State Water Board or Regional Office of the EPA."	Precautionary Statements immediately following the User Safety Recommendations		
	End Use Products Intended for Occupational Use (WPS and NonWPS)			

Description	Amended Labeling Language	Placement on Label
Restricted Use Pesticide (In addition to the uses previously restricted, all uses of products containing >4% active ingredient must be classified restricted use)	"RESTRICTED USE PESTICIDE" "Due to ground and surface water concerns. For retail sale to and use only by certified applicators or persons under their direct supervision, and only for those uses covered by the certified applicator's certification."	Top of front panel
Text required from Memorandum of Agreement	"ANY USE OF THIS PRODUCT IN AN AREA WHERE USE IS PROHIBITED IS A VIOLATION OF FEDERAL LAW. Before using this product, you must consult the Atrazine Watershed Information Center (AWIC) to determine whether the use of this product is prohibited in your watershed. AWIC can be accessed through [www.atrazine-watershed.info], or [1-866-365-3014]. If use of this product is prohibited in your watershed, you may return this product to your point of purchase or contact [registrant] for a refund."	Directions for Use
PPE Requirements Established by the IRED ¹ for liquid products that do NOT contain directions for use on lawns or other turfgrass	 "Personal Protective Equipment (PPE)" "Some materials that are chemical-resistant to this product are (<i>registrant inserts correct chemical-resistant material</i>). If you want more options, follow the instructions for category [<i>registrant inserts A,B,C,D,E,F,G,or H</i>] "on an EPA chemical-resistance category selection chart." "Mixers, loaders, applicators, flaggers, and other handlers must wear: > Long sleeved shirt and long pants, > Chemical resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>), > Shoes plus socks, and > Chemical-resistant apron, when mixing/loading, cleaning up spills, or cleaning equipment, or otherwise exposed to the concentrate." "See engineering controls for additional requirements." 	Immediately following/below Precautionary Statements: Hazards to Humans and Domestic Animals

Description	Amended Labeling Language	Placement on Label
PPE Requirements Established by the IRED ¹ for liquid products that DO contain directions for use on lawns or other turfgrass	 "Personal Protective Equipment (PPE)" "Some materials that are chemical-resistant to this product are (<i>registrant inserts correct chemical-resistant material</i>). If you want more options, follow the instructions for category [<i>registrant inserts A,B,C,D,E,F,G,or H</i>] "on an EPA chemical-resistance category selection chart." "Applicators using spray equipment mounted on their backs must wear: > Coveralls over long-sleeved shirt and long pants, > Chemical-resistant footwear plus socks, and > Chemical-resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>)." "Mixers, loaders, all other applicators, flaggers, and other handlers must wear: > Long sleeved shirt and long pants, > Chemical resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>), > Shoes plus socks, and > Chemical-resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>), > Shoes plus socks, and > Chemical-resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>), > Shoes plus socks, and > Chemical-resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>), > Shoes plus socks, and > Chemical-resistant apron, when mixing/loading, cleaning up spills, cleaning equipment, or otherwise exposed to the concentrate." 	Immediately following/below Precautionary Statements: Hazards to Humans and Domestic Animals

Description	Amended Labeling Language	Placement on Label
PPE Requirements Established by the IRED ¹ for wettable powder and dry flowable (water dispersible granular) formulations in water-soluble packets that do NOT contain directions for use on lawns or other turfgrass. Note: all wettable powder products with WPS uses on the label must be in water soluble packets to be eligible for reregistration. Dry flowable (water dispersible granular) formulations are not required to be in water- soluble packets. However aerial application is prohibited unless a dry flowable (water dispersible granular) formulation is packaged in water-soluble packets.	 "Personal Protective Equipment (PPE)" "Some materials that are chemical-resistant to this product are (<i>registrant inserts correct chemical-resistant material</i>). If you want more options, follow the instructions for category [<i>registrant inserts A,B,C,D,E,F,G,or H</i>] "on an EPA chemical-resistance category selection chart." "Mixers, loaders, applicators, flaggers, and other handlers must wear: > Long sleeved shirt and long pants, > Chemical resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>), > Shoes plus socks, and > Chemical-resistant apron, when mixing/loading, cleaning up spills, cleaning equipment, or otherwise exposed to the concentrate." "See engineering controls for additional requirements." 	Immediately following/below Precautionary Statements: Hazards to Humans and Domestic Animals

Description	Amended Labeling Language	Placement on Label
PPE Requirements Established by the IRED ¹ for wettable powder and dry flowable (water dispersible granular) formulations packaged in water-soluble packets that DO contain directions for use on lawns or other turfgrass. <i>Note: all wettable powder products</i> with WPS uses on the label must be in water soluble packets to be eligible for reregistration. Dry flowable (water dispersible granular) formulations are not required to be in water- soluble packets. However aerial application is prohibited unless a dry flowable (water dispersible granular) formulation is packaged in water-soluble packets.	 "Personal Protective Equipment (PPE)" "Some materials that are chemical-resistant to this product are (registrant inserts correct chemical-resistant material). If you want more options, follow the instructions for category [registrant inserts A,B,C,D,E,F,G,or H] "on an EPA chemical-resistance category selection chart." "Applicators using spray equipment mounted on their backs must wear: > Coveralls over long-sleeved shirt and long pants, > Chemical-resistant footwear plus socks, and > Chemical-resistant gloves, such as (registrant insert correct chemical-resistant materials)." "Mixers, loaders, applicators, flaggers, and other handlers must wear: > Long sleeved shirt and long pants, > Chemical resistant gloves, such as (registrant insert correct chemical-resistant materials), > Shoes plus socks, and > Chemical-resistant gloves, such as (registrant insert correct chemical-resistant materials), > Shoes plus socks, and > Chemical-resistant gloves, such as (registrant insert correct chemical-resistant materials), > Shoes plus socks, and > Chemical-resistant apron, when mixing/loading, cleaning up spills, cleaning equipment, or otherwise exposed to the concentrate." "See engineering controls for additional requirements." 	Immediately following/below Precautionary Statements: Hazards to Humans and Domestic Animals

Description	Amended Labeling Language	Placement on Label
PPE Requirements Established by the IRED ¹ for dry flowable (water dispersible granule) products NOT packaged in water soluble packets that do NOT contain directions for use on lawns or other turfgrass <i>Note: if not packaged in</i> <i>water-soluble packets, aerial</i> <i>application is prohibited.</i>	 "Personal Protective Equipment (PPE)" "Some materials that are chemical-resistant to this product are (<i>registrant inserts correct chemical-resistant material</i>). If you want more options, follow the instructions for category [<i>registrant inserts A,B,C,D,E,F,G,or H</i>] on an EPA chemical-resistance category selection chart." "Mixers, loaders, cleaners of equipment or spills, and other handlers exposed to the concentrate must wear: > Coveralls over long sleeved shirt and long pants, > Chemical-resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>) > Chemical-resistant apron, and > A NIOSH-approved dust/mist filtering respirator with any N, R, P or HE filter or a NIOSH-approved dust/mist filtering respirator with approval number prefix TC-21C)." Applicators and all other handlers exposed to the dilute must wear: > Long sleeved shirt and long pants, > Shoes plus socks, and > Chemical resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>)." "Aerial application is prohibited." "See engineering controls for additional requirements." 	Immediately following/below Precautionary Statements: Hazards to Humans and Domestic Animals

Description	Amended Labeling Language	Placement on Label
PPE Requirements Established by the IRED ¹ for dry flowable (water dispersable granule) products NOT packaged in water soluble packets that DO contain directions for use on lawns or other turfgrass <i>Note: if not packaged in water-soluble packets, aerial</i> <i>application is prohibited</i> .	 "Personal Protective Equipment (PPE)" "Some materials that are chemical-resistant to this product are" (<i>registrant inserts correct chemical-resistant material</i>). "If you want more options, follow the instructions for category" [<i>registrant inserts A,B,C,D,E,F,G,or H</i>] "on an EPA chemical-resistance category selection chart." "Mixers, loaders, cleaners of equipment or spills, and other handlers exposed to the concentrate must wear: > Coveralls over long sleeved shirt and long pants, > Chemical-resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>), > Chemical-resistant footwear plus socks, > Chemical-resistant apron, and > A NIOSH-approved dust/mist filtering respirator with any N, R, P or HE filter or a NIOSH-approved dust/mist filtering respirator with approval number prefix TC-21C)." "Applicators using spray equipment mounted on their backs must wear: > Coveralls over long sleeved shirt and long pants, > Chemical-resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>), and > Chemical-resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>), and > Chemical-resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>), and > Chemical-resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>), and > Chemical-resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>), and > Chemical-resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>), and > Chemical-resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>), and > Chemical-resistant gloves, such as (<i>registrant insert correct chemical-resistant materials</i>)." "All other applicators and all other handlers exposed to the dilute must wear: > Long sleeved shirt and long p	Immediately following/below Precautionary Statements: Hazards to Humans and Domestic Animals
PPE Requirements Established by the IRED ¹ for granular products	"Personal Protective Equipment (PPE)" "Loaders, applicators and other handlers must wear: > Long-sleeved shirt and long pants, and > Shoes plus socks."	Immediately following/below Precautionary Statements: Hazards to Humans and Domestic Animals

Description	Amended Labeling Language	Placement on Label
User Safety Requirements	"Follow manufacturer's instructions for cleaning/maintaining PPE. If no such instructions for washables exist, use detergent and hot water. Keep and wash PPE separately from other laundry." <i>If coveralls are specified in the handler PPE section of the label, use the following in addition to the</i>	Precautionary Statements: Hazards to Humans and Domestic Animals immediately following the PPE requirements
	<i>above statement:</i> "Discard clothing and other absorbent materials that have been drenched or heavily contaminated with	
	this product's concentrate. Do not reuse them."	
Engineering Controls for liquid formulations that contain directions for use permitting aerial application.	 "Engineering Controls" "Mixers and loaders supporting aerial applications at a rate greater than 3 lbs ai/A must use a closed system that meets the requirements for dermal protection listed in the Worker Protection Standard (WPS) for Agricultural Pesticides [40 CFR 170.240(d)(4) and must: -wear the personal protective equipment required for mixers and loaders, -wear protective eyewear if the system operates under pressure, and -be provided and have immediately available for use in an emergency, such as a spill or equipment breakdown: chemical resistant footwear." "Pilots must use an enclosed cockpit in a manner that is consistent with the WPS for Agricultural Pesticides [40 CFR170.240(d)(6)]. Pilots must wear the PPE required on this labeling for applicators, 	Precautionary Statements: Hazards to Humans and Domestic Animals (Immediately following PPE and User Safety Requirements.)
	 Freshcides [40 CFR170.240(d)(6)]. Flots must wear the FFE required on this fabeling for applicators, however, they need not wear chemical-resistant gloves when using an enclosed cockpit." "Flaggers supporting aerial applications must use an enclosed cab that meets the definition on the Worker Protection Standard for Agricultural Pesticides [40 CFR 170.240 (d)(5)] for dermal protection." 	
Engineering Controls for wettable powders and dry flowables (water dispersible granules) packaged in water- soluble packets. <i>All wettable</i> <i>powders with WPS uses must</i> <i>be in water soluble packets</i> <i>to be eligible for</i> <i>reregistration.</i>	 "Engineering Controls" "Water soluble packets when used correctly qualify as a closed mixing/loading system under the Worker Protection Standard for Agricultural Pesticides [40 CFR 170.240(d)(4). Mixers and loaders using water soluble packets must: -wear the personal protective equipment required on this labeling for mixers and loaders, and -be provided and have immediately available for use in an emergency, such as a broken package, spill, or equipment breakdown, chemical resistant footwear." 	Precautionary Statements: Hazards to Humans and Domestic Animals (Immediately following PPE and User Safety Requirements.)

Description	Amended Labeling Language	Placement on Label
Engineering Controls for wettable powders and dry flowables (water dispersible granules) packaged in water- soluble packets that contain directions for use permitting aerial application. <i>All</i> <i>wettable powders with WPS</i> <i>uses must be in water soluble</i> <i>packets to be eligible for</i> <i>reregistration.</i>	"Pilots must use an enclosed cockpit in a manner that is consistent with the WPS for Agricultural Pesticides [40 CFR170.240(d)(6)]. Pilots must wear the PPE required on this labeling for applicators, however, they need not wear chemical-resistant gloves when using an enclosed cockpit." "Flaggers supporting aerial applications must use an enclosed cab that meets the definition on the Worker Protection Standard for Agricultural Pesticides [40 CFR 170.240 (d)(5)] for dermal protection.	Precautionary Statements: Hazards to Humans and Domestic Animals (Immediately following the water-soluble packaging engineering control requirements.)
Additional Engineering Controls Statement for all liquid, wettable powder, and dry flowable formulations.	"When applicators use enclosed cabs in a manner that meets the requirements listed in the Worker Protection Standard (WPS) for agricultural pesticides (40 CFR 170.240(d)(5), the handler PPE requirements may be reduced or modified as specified in the WPS."	Precautionary Statements: Hazards to Humans and Domestic Animals (Immediately following any other engineering control requirements.)
Engineering Controls for Granular Formulations	Note to registrants: no engineering controls statement is needed on labels of granular formulations.	not applicable
User Safety Recommendations	 "User Safety Recommendations" "Users should wash hands before eating, drinking, chewing gum, using tobacco, or using the toilet." "Users should remove clothing/PPE immediately if pesticide gets inside. Then wash thoroughly and put on clean clothing." "Users should remove PPE immediately after handling this product. Wash the outside of gloves before removing. As soon as possible, wash thoroughly and change into clean clothing." 	Precautionary Statements under: Hazards to Humans and Domestic Animals immediately following Engineering Controls (Must be placed in a box.)

Description	Amended Labeling Language	Placement on Label
Environmental Hazards	"Atrazine can travel (seep or leach) through soil and can enter ground water which may be used as drinking water. Atrazine has been found in ground water. Users are advised not to apply atrazine to sand and loamy sand soils where the water table (ground water) is close to the surface and where these soils are very permeable; i.e., well-drained. Your local agricultural agencies can provide further information on the type of soil in your area and the location of ground water."	Environmental Hazards
	"Product must not be mixed or loaded within 50 feet of intermittent streams and rivers, natural or impounded lakes and reservoirs. Product must not be applied within 66 feet of points where field surface water runoff enters perennial or intermittent streams and rivers or within 200 feet of natural or impounded lakes and reservoirs. If this product is applied to highly erodible land, the 66 foot buffer or setback from runoff entry points must be planted to crop, or seeded with grass or other suitable crop."	
	"Product must not be mixed or loaded, or used within 50 feet of all wells, including abandoned wells, drainage wells, and sink holes. Operations that involve mixing, loading, rinsing, or washing of this product into or from pesticide handling or application equipment or containers within 50 ft. of any well are prohibited, unless conducted on an impervious pad constructed to withstand the weight of the heaviest load that may be positioned on or moved across the pad. Such a pad shall be designed and maintained to contain any product spills or equipment leaks, container or equipment rinse or wash water, and rain water that may fall on the pad. Surface water shall not be allowed to either flow over or form the pad which means the pad must be self-contained. The pad shall be sloped to facilitate material removal. An unroofed pad shall be of sufficient capacity to contain at a minimum 110% of the capacity of the largest pesticide container or application equipment on the pad. A pad that is covered by a roof of sufficient size to completely exclude precipitation from contact with the pad shall have a minimum containment capacities as described above shall be maintained at all times. The above-specified minimum containment capacities do not apply to vehicles when delivering pesticide to the mixing/loading sites."	

Description	Amended Labeling Language	Placement on Label
Environmental Hazards Continued	"One of the following restrictions must be used in applying atrazine to tile-outletted fields containing standpipes:	Environmental Hazards
	- Do not apply within 66 feet of standpipes in tile-outletted fields.	
	- Apply this product to the entire tile-outletted field and immediately incorporate it to a depth of 2-3 inches in the entire field.	
	- Apply this product to the entire tile-outletted field under a no-till practice only when a high crop residue management practice is practiced. High crop residue management is described as a crop management practice where little or no crop residue is removed from the field during and after crop harvest."	
	"This pesticide is toxic to aquatic invertebrates. Do not apply directly to water, to areas where surface water is present, or to intertidal areas below the mean high water mark. Do not apply when weather conditions favor drift from treated areas. Runoff and drift from treated areas may be hazardous to aquatic organisms in neighboring areas. Do not contaminate water when disposing of equipment wash water."	
Restricted-Entry Interval (for labels with WPS uses)	"Do not enter or allow worker entry into treated areas during the restricted entry interval (REI) of 12 hours."	Directions for Use, Agricultural Use Requirements Box
Early Reentry Personal Protective Equipment established by the IRED (for labels with WPS uses.	"PPE required for early entry to treated areas that is permitted under the Worker Protection Standard and that involves contact with anything that has been treated, such as plants, soil, or water, is: > coveralls, > shoes plus socks, and	
	> chemical resistant gloves, such as any waterproof material."	

Description	Amended Labeling Language	Placement on Label
Entry Restriction for NonWPS uses	Entry Restriction for non-WPS uses applied as a spray:	If no WPS uses on the label, place the statements
	"Do not enter or allow others to enter until sprays have dried."	in the Directions for Use Under General Precautions
	Entry Restriction for non-WPS uses applied dry:	and Restrictions.
	"Do not enter or allow others to enter until dusts have settled."	If WPS uses are also on the labeling, place these statements in a
	Entry Restriction for non-WPS uses applied as a solid (i.e. granular) and watered-in (for occupational use to home lawns):	NonAgricultural Use Requirements box as specified in PR Notice 93-
	"Do not enter or allow others to enter the treated area until dusts have settled. If soil incorporation is required after the application, do not enter or allow others to enter the treated area (except those persons involved in the incorporation) until the incorporation is complete. If the incorporation is accomplished by watering-in, do not enter or allow others to enter the treated area until the surface is dry after the watering-in."	7 and 93-11.

Description	Amended Labeling Language	Placement on Label
Other Application	All Products/Formulations Containing Atrazine	
Restrictions (Risk Mitigation)	"Do not apply this product through any type of irrigation system"	
	"When tank-mixing or sequentially applying atrazine or products containing atrazine to corn or sorghum, the total pounds of atrazine applied (lbs ai/A) must not exceed 2.5 pounds active ingredient per year."	
	"When tank-mixing or sequentially applying atrazine or products containing atrazine to crops other than corn or sorghum, the total pounds of atrazine applied (lbs ai/A) must not exceed the specific seasonal rate limits as noted in the use directions."	
	Delete all directions for use for the following use-patterns:	
	>rangeland >total vegetation control on non-cropland areas (except Conservation Reserve Program(CRP), rights-of-ways, and roadsides)	Directions for Use
	>proso millet, and	Directions for Use
	>pineapple uses.	
	Products with Guava Uses:	
	- "Do not apply more than 4 pounds active ingredient per acre for any application."	
	- "Do not apply more than 8 pounds active ingredient per year."	
	Macadamia Nut Uses:	
	- "Do not apply more than 4 pounds active ingredient per acre for any application."	
	- "Do not apply more than 8 pounds active ingredient per year."	
	Conifers Uses:	
	- "Do not apply more than 4 pounds active ingredient per acre for any application."	
	- "Do not apply more than 4 pounds active ingredient per year."	

Description	Amended Labeling Language	Placement on Label
Other Application	Sod Farm Uses	
Restrictions (Risk	-For muck or peat soils:	
Mitigation)	> "Do not apply more than 4 pounds active ingredient per acre for any application."	
	> "Do not apply more than 6 pounds active ingredient per year."	
	-For sandy soils:	
	> "Do not apply more than 4 pounds active ingredient per acre for any application."	
	> "Do not apply more than 3 pounds active ingredient per year."	
	Conservation Reserve Program Uses:	
	- "Do not apply more than 2 pounds active ingredient per acre for any application."	
	Chemical Fallow Uses:	Directions for Use
	For soils in North and South Dakota with a pH of 7.5 or greater:	
	- "Do not apply more than 1.5 pounds active ingredient per acre for any application."	
	- "Do not apply more than one application per year."	
	For soils in North and South Dakota with a pH of less than 7.5:	
	- "Do not apply more than 2.0 pounds active ingredient per acre for any application."	
	- "Do not apply more than one application per year."	
	For all other locations:	
	- "Do not apply more than 2.25 pounds active ingredient per acre for any application."	
	– "Do not apply more than one application per year."	

Description	Amended Labeling Language	Placement on Label
Other Application Restrictions (Risk	Rights-of-Way Uses (applied as a spray): – "Do not apply more than 1.0 pounds active ingredient per acre for any application."	Directions for Use
Mitigation) continued	 "Do not apply more than one application per year." 	
	Sugarcane Uses:	
	- "Do not apply more than 4.0 pounds active ingredient per acre for any application."	
	- "Do not apply more than 10.0 pounds active ingredient per acre per year."	
	Corn and Sorghum Uses:	
	-Field corn forage uses: 60-day PHI	
	-Sweet corn forage uses: 45-day PHI	
	- Preemergent sorghum forage uses: 60-day PHI	
	- Postemergent sorghum forage uses: 45-day PHI	
	-"Postemergence applications to corn and sorghum must be made before crop reaches 12 inches in height"	
	"Maximum broadcast application rates for corn and sorghum must be as follows:	
	> If no atrazine was applied prior to corn/sorghum emergence, apply a maximum of 2 lb ai/A	
	broadcast. If a postemergence treatment is required following an earlier herbicide application, the total atrazine applied may not exceed 2.5 lb ai/A per calendar year.	
	> Apply a maximum of 2.0 lb ai/A as a single preemergence application on soils that are not highly erodible or on highly erodible soils if at least 30% of the soil is covered with plant residues; or	
	> Apply a maximum of 1.6 lb ai/A as a single preemergence application on highly erodible soils if <30% of the surface is covered with plant residues; or 2.0 lb ai/A if only applied postemergence."	

Description	Amended Labeling Language	Placement on Label
Other Application Restrictions (Risk Mitigation) continued	 Roadsides Uses: "Do not apply more than 1.0 pounds active ingredient per acre for any application." "Do not apply more than one application per year." 	Directions for Use
	 Dry Bulk Fertilizer Impregnation Uses: "Impregnation of bulk fertilizer is restricted to commercial facilities. On-farm fertilizer impregnation is prohibited." "No more than 500 tons of dry bulk fertilizer can be impregnated per day." "No single facility may impregnate fertilizer with this product for more than to 30 days per calendar year." "The commercial facility impregnating the dry bulk fertilizer must inform, in writing, the user (applicator) of the dry bulk fertilizer that: "Applicators must wear long-sleeved shirt, long pants, shoes, and socks." "The restricted-entry interval is 12 hours." 	
Application Restrictions for Granular formulations that contain directions for use on turfgrass at residential sites, including homes, daycare facilities, schools, playgrounds, parks, recreational areas, and sports fields	 "Turfgrass at Residential Sites (including homes daycare facilities, schools, playgrounds, parks, recreational areas, and sports fields:" "This product must be watered in immediately after application. Watering-in must be performed by the commercial applicator or the commercial applicator must provide the following instructions to the resident or owner in writing: "This product must be watered in immediately. "Do not enter or allow others (including children or pets) to enter the treated areas (except those involved in the watering) until the watering-in is complete and the surface is dry." 	Directions for Use

Description	Amended Labeling Language	Placement on Label
Application Restrictions for Liquid, Wettable Powder, or Dry Flowable (Water- Dispersible Granule) formulations that contain directions for use on turfgrass at residential sites, including homes, daycare facilities, schools, playgrounds, parks, recreational areas, and sports fields	 "Turfgrass at Residential Sites (including homes daycare facilities, schools, playgrounds, parks, recreational areas, and sports fields):" "Do not apply more than 1.0 pounds active ingredient per acre for any application." "Do not apply more than 2.0 pounds active ingredient per acre per year." 	
Application Restrictions for Dry Flowable Formulations NOT packaged in water- soluble packets	"Aerial application is prohibited."	Near the beginning of the Directions for Use in bold type and red lettering.
	End Use Products Intended Primarily for Use by Homeowners	
Environmental Hazards	"Atrazine can travel (seep or leach) through soil and can enter ground water which may be used as drinking water. Atrazine has been found in ground water. Users are advised not to apply Atrazine on sand and loamy soils where the water table (ground water) is close to the surface and where these soils are very permeable; i.e., well drained. Your local agricultural agencies can provide further information on the type of soil in your area and the location of ground water. This product is toxic to aquatic invertebrates. Do not apply directly to water, to areas where surface water is present or to intertidal areas below the mean high water mark. Runoff and drift from treated areas may be hazardous to aquatic organisms in neighboring areas. Do not contaminate water when disposing of equipment washwaters."	Precautionary Statements

Description	Amended Labeling Language	Placement on Label
Application Restrictions	 All products: "Do not apply this product in a way that will contact any person or pet, either directly or through drift. Keep people and pets out of the area during application." Granular Products Applied Dry: "This product must be watered in immediately after application." 	Directions for Use under General Precautions and Restrictions Statements must be in the color red and in all caps.
Entry Restriction	Products Applied as a Liquid:"Do not allow people or pets to enter the treated area until sprays have dried."	Directions for Use under General Precautions and Restrictions
	Products Applied Dry: "Do not enter or allow others (including children or pets) to enter the treated areas (except those involved in the watering) until the watering-in is complete and the surface is dry."	Statements must be in the color red and in all caps.

Description	Amended Labeling Language	Placement on Label
Precautionary Statements	For Granular Lawn Products:	Immediately following/below
	"Do not apply granular lawn products by hand. Avoid contact with hands or skin."	Precautionary Statements: Hazards to Humans and
	"Broadcast applications must NOT be made using hand-held devices, such as a belly grinder or handheld rotary applicator. Such equipment may only be used for spot treatments."	Domestic Animals
	For Liquid products:	
	- "Maximum rate per application turfgrass (including lawns) is [registrant insert the maximum rate of the <i>formulated product</i> per unit area – such as 2 pints per 1,000 square feet – that reflects an maximum application rate of 1 pound active ingredient per acre]."	
	– "Maximum of two applications per year."	

US EPA ARCHIVE DOCUMENT

APPENDICES

US EPA ARCHIVE DOCUMENT

Appendix A: ATRAZINE USE PATTERNS ELIGIBLE FOR REREGISTRATION

Site Application Type Application Timing Application Equipment FOOD/FEED USE PATTERNS Corn	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations
Broadcast or banded Early Preplant; preplant surface or incorporated, preemergence, or postemergence to corn ≤12" tall Ground or aerial applications	90% DF 4 lb/gal FlC Others ^d	 1.6 preemergence on highly erodible soil if < 30% surface covered with plant residues 2 preemergence on not highly erodible soil or if > 30% surface covered with plant residues 2 postemergence 	NS (Not specified)	2.5	60 for forage 60 for field corn 45 for sweet corn	NS	For preplant surface treatments, use on medium or fine-textured soils with reduced tillage systems only in CO, IA, IL, IN, KS, KY, MN, MO, MT, ND, NE, SD, WI and WY, up to 45 days preplanting; on coarse textured soils, do not apply >2 weeks prior to planting.
Broadcast Fallow weed control (and continued control in following minimum tillage corn). Applied to stubble ground after wheat harvest in a wheat-corn-fallow crop rotation. Ground or aerial applications	90% DF 4 lb/gal FlC	3 1.5 (ND & SD soils with pH>7.5) 2.0 (ND & SD soils with pH<7.5)	1	NS	NS	NS	Use limited to CO, KS, ND, NE, SD, and WY. Wheat-corn-fallow cropping sequence must be followed. Do not apply following corn harvest. An 18- month plant-back restriction is specified for all crops other than those on the label. Grazing or feeding of forage from treated areas are prohibited.

Site Application Type Application Timing Application Equipment	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations
Broadcast Winter weed control in TX Ground or aerial applications	90% DF 4 lb/gal FlC	0.8-1.0	NS	NS	NS	N/A	For postemergence control of winter weeds only on fall bedded land in the Gulf Coast and Blacklands of TX. Normal weed control programs may be used in the following corn, grain sorghum, or sorghum forage crops the following spring. The label prohibits planting any crops except corn, grain sorghum, or forage sorghum in the spring following this treatment.
Guava	-					-	
Broadcast Ground application	90% DF 4 lb/gal FIC	4.0	3	8.0	NS	120	Use only on established guava at least 18 months old. Label states, "do not apply more frequntly than at 4-month intervals". "Do not apply more than 4 pounds active ingredient per acre for any application." "Do not apply more than 8 pounds active ingredient per year."

Site							
Application Type Application Timing Application Equipment	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations
Broadcast or banded Early Preplant; preplant surface or incorporated, preemergence, or postemergence to sorghum ≤12" tall Ground or aerial applications	90% DF 4 lb/gal FIC Others ^d	 1.6 preemergence on highly erodible soil if < 30% surface covered with plant residues 2 preemergence on not highly erodible soil or if > 30% surface covered with plant residues 2 postemergence 	NS	2.5	60 for forage 60 for preemerg. use 45 for postemer. use	NS	A 60-day PGI or PHI for forage is in effect. For preplant surface treatments, use on medium or fine-textured soils with reduced tillage systems only in CO, IA, IL, IN, KS, KY, MN, MO, MT, ND, NE, SD, WI and WY, up to 45 days preplanting; on coarse textured soils, do not apply >2 weeks prior to planting. Do not apply preplant surface or incorporated in AL, AR, FL, GA, LA, MS, NC, NM, OK, SC, TN, or TX. Do not apply preemergence in NM, OK, or TX, except in northeast OK, the TX Gulf Coast and Blacklands areas.
Broadcast Winter weed control in TX Ground or aerial applications	90% DF 4 lb/gal FlC	0.8-1.0	NS	NS	NS	NA	For postemergence control of winter weeds only on fall bedded land in the Gulf Coast and Blacklands of TX. Normal weed control programs may be used in the following corn, grain sorghum, or sorghum forage crops the following spring. The label prohibits planting any crops except corn, grain sorghum, or forage sorghum in the spring following this treatment.
Broadcast Fallow weed control (and continued control in minimum tillage sorghum) applied to stubble ground following wheat harvest in a wheat-sorghum- fallow crop rotation. Ground or aerial applications Macadamia nuts	90% DF 4 lb/gal FIC	3	1	NS	NS	NA	 Wheat-sorghum-fallow cropping sequence must be followed. Do not apply following sorghum harvest. An 18-month plant-back restriction is specified for all crops other than those on the label. Grazing or feeding of forage from treated areas are prohibited.

Site							
Application Type		Max. Single	Max. #	Max Annual	Pre-	Minimum Retreatment	
Application Timing		Application Rate	Apps/	Application	harvest Interval	Interval	
Application Equipment	Formulation	(lb ai/A)	season	Rate (lb ai/A)	(days)	(days)	Use Limitations
Broadcast	90% DF	4.0	NS	8.0	NS	NS	"Do not apply more than 4 pounds active ingredient per acre for any applications."
Ground application	4 lb/gal FlC						"Do not apply more than 8 pounds active ingredient per year."
Soybeans (Unspecified)							
	43% EC	2.5	NS	NS	NS	NS	
Sugarcane				•			
Broadcast or banded	90% DF	2-4	4	10	NS	NS	Treatments may be made applied in a minimum of 20 gal/A of water by ground
Preemergence (at-planting or ratooning) followed by one application at emergence, and up to two interline post-emergence directed applications prior to close- in (lay-by). Ground or aerial application	4 lb/gal FlC						and 5 gal/A of water by air. A reasonable interval between lay-by and harvest would be 120-150 days, providing a built-in PHI. In FL and TX, 0.5-1 gal of surfactant/100 gal of spray may be used. In LA, an application of 2 lb ai/A may be used to control annual weeds during summer fallow period; after- planting applications may not exceed 8 lb ai/A.
Fallow Wheat Stubble (Wheat is no	t a target crop)					
Broadcast	90% DF	0.5-1	1	NS	NS	NA	Use limited to CO, KS, ND, NE, SD, and WY.
Fallow weed control applied to stubble ground following wheat harvest in a wheat-fallow-wheat crop rotation.	4 lb/gal FlC						Grazing of treated areas is prohibited for 6 months, and a 12-month plant-back interval for wheat is specified.
Ground or aerial applications							
NON FOOD/NON FEED USE PAT	TERNS						
Agricultural Fallow/Idleland							

Site Application Type Application Timing		Max. Single Application Rate	Max. # Apps/	Max Annual Application	Pre- harvest Interval	Minimum Retreatment Interval	
Application Equipment At Planting	Formulation 43% EC 43% SC/L 90% DF	(lb ai/A) 2.25	season 1	Rate (lb ai/A) 2.25	(days) NS	(days) NS	Use Limitations "Do not apply more than 2.25 pounds active ingredient per acre for any application." "Do not apply more than one application per
							year."
Established Plantings	90% DF	1	1	NS	NS	NS	
Fall	43% EC 90% DF	1	NS	NS	NS	NS	
Fallow	20.9% EC 21.92% FIC 43% EC 43% FIC 43% SC/L 80% WP 85.5% DF 90% DF 90% WP	2.25	1	2.25	NS	NS	"Do not apply more than 2.25 pounds active ingredient per acre for any application." "Do not apply more than one application per year."
February March	90% DF	1	NS	NS	NS	NS	
Late Fall	43% FIC 85.5% DF 90% DF	0.4	1	0.4	NS	NS	
Postharvest	22% FlC 43% EC 90% WP	1	1	1	NS	NS	
Preemergence Preplant	43% EC 43% SC/L 85.5% DF 90% DF	2	NS	NS	NS	NS	

Site Application Type Application Timing Application Equipment	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations
Renovation	43% EC	2	NS	2	NS	NS	
Spring	43% EC 85.5% DF 90% DF	2	INS	2	INS	INS	
Stubble	22% EC 22% FlC 43% EC 43% SC/L 53.5% EC 80% WP 90% DF 90% WP	2.25	1	2.25	NS	NS	"Do not apply more than 2.25 pounds active ingredient per acre for any application." "Do not apply more than one application per year."
Bermudagrass	•						
Dormant, spring	43% EC 90% DF	2	NS	NS	NS	NS	
Christmas Tree Plantations	1						
Fall, Early Spring							
	21.42 EC 80% WP	4	NS	NS	NS	NS	
Commercial/industrial Lawns	-						-
Early Spring							
	.58% G .92% G	0.046 lb 1Kft ²	NS	NS	NS	NS	
Fall	•						
	.45% G .92% G 1.05% G	0.046 lb 1Kft ²	NS	NS	NS	NS	
Post-plant	_					_	_
	25% FIC	.75	NS	NS	NS	NS	
Spring	-			-		-	-

Site					Due	Minimum	
Application Type		Max. Single	Max. #	Max Annual	Pre- harvest	Minimum Retreatment	
Application Timing		Application Rate	Apps/	Application	Interval	Interval	
Application Equipment	Formulation	(lb ai/A)	season	Rate (lb ai/A)	(days)	(days)	Use Limitations
	.45% G	0.046 lb 1Kft ²	NS	NS	NS	NS	
	.92% G						
	1.05% G						
Conifers (Seed Orchard)				•		•	•
Dormant							
	43% EC 90% WP	4	NS	4	NS	NS	"Do not apply more than 4 pounds active ingredient per acre for any applications."
							"Do not apply more than 4 pounds active ingredient per year."
Forest Plantings (Reforestation Pr	ograms)(Tree F	'arms, Tree Plantat	ions, Etc.)				
Early Spring							
	80% WP	4	1	NS	NS	NS	
Fall				-			·
	80% WP	4	1	NS	NS	NS	
	90% WP						
Forest Trees (Softwoods, Conifers)					•	•
Dormant							
	43% EC	4	1	4	NS	NS	"Do not apply more than 4 pounds active
	43% FIC						ingredient per acre for any application."
	85.5% DF						
	90% DF						"Do not apply more than 4 pounds active ingredient per year."
Early Spring							
	25% FIC	3.96	1	NS	NS	NS	"Do not apply more than 4 pounds active
	90%DF						ingredient per acre for any application."
	90% WP						
							"Do not apply more than 4 pounds active ingredient per year."
Established Planting							

Site Application Type Application Timing Application Equipment	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations
	43% EC 43.6% EC 53.48% EC 80% WP 85.5% DF 90% DF	4	1	NS	NS	NS	"Do not apply more than 4 pounds active ingredient per acre for any application." "Do not apply more than 4 pounds active ingredient per year."
Fall							
	25% FIC 43% EC 90% DF 90% WP	4	1	NS	NS	NS	"Do not apply more than 4 pounds active ingredient per acre for any application." "Do not apply more than 4 pounds active ingredient per year."
Post-Plant	•			•			
	43% DF 43% EC	4.4	1	NS	NS	NS	"Do not apply more than 4 pounds active ingredient per acre for any application." "Do not apply more than 4 pounds active ingredient per year."
Post-transplant	1					1	
*	43% EC 43% SC/L 43.5% EC 43.6% EC 53.48% EC 80% WP 85.5% DF 90% DF 90% WP	4	1	NS	NS	NS	"Do not apply more than 4 pounds active ingredient per acre for any application." "Do not apply more than 4 pounds active ingredient per year."

Site Application Type Application Timing Application Equipment	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations
	43% DF 43% EC	4.4	1	NS	NS	NS	"Do not apply more than 4 pounds active ingredient per acre for any application."
							"Do not apply more than 4 pounds active ingredient per year."
Pre-transplant							-
Spring	43% RC 43% SC/L 43.5% EC 43.6% EC 53.48% EC 80% WP 85.5% DF 90% DF 90% WP	4	1	NS	NS	NS	 "Do not apply more than 4 pounds active ingredient per acre for any application." "Do not apply more than 4 pounds active ingredient per year." "Do not apply more than 4 pounds active ingredient per acre for any application." "Do not apply more than 4 pounds active ingredient per acre for any application."
Transplant							ingreatent per year.
	43% EC 43% SC/L 43.5% EC 85.5% DF 90% DF	4	1	NS	NS	NS	"Do not apply more than 4 pounds active ingredient per acre for any application." "Do not apply more than 4 pounds active ingredient per year."
Winter						•	

Site Application Type Application Timing Application Equipment	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations
	43% DF 43% EC	4.4	1	NS	NS	NS	"Do not apply more than 4 pounds active ingredient per acre for any application."
							"Do not apply more than 4 pounds active ingredient per year."
Golf Course Turf							
At Planting							
	90% DF	099	NS	NS	NS	NS	
Dormant						•	
	53.48% EC 90% DF	2.5	NS	NS	NS	NS	
Early Spring							
	90% DF	1.98	NS	NS	NS	NS	
Fall							
Foliar	.45% G .6% G .92% G 43% EC 43% FIC 53.48% EC 89% WP 90% DF 90% WP	2	NS	NS	NS	NS	
ronal	53.48% EC 90% DF	2.5	NS	NS	NS	NS	
Late Winter	1			1		1	

Site Application Type Application Timing Application Equipment	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations
	.6% G	2	NS	NS	NS	NS	
	43% EC						
	43% FIC						
	53.48% EC						
	80% WP						
	90% DF						
	90.1% DF						
Post-plant	_				_	_	_
	25% FIC	.75	NS	NS	NS	NS	
Spring	-						
	.45%G	.046 lb/1Kft ²	NS	NS	NS	NS	
	.6% G						
	.92% G						
Winter	-					•	•
	90% DF	1.98	2	NS	NS	NS	
Grasses Grown for Seed							•
Dormant							
	43% FIC	1	NS	NS	NS	NS	
	90% DF						
Nonagricultural Rights of way/fend	cerows/hedgero	WS					
Delayed Dormant							
	43% EC	1	1	NS	NS	NS	"Do not apply more than 1 pound active ingredient per acre for any application."
							"Do not apply more than one application per year."
Dormant	•			•		•	•

Early Spring Fall	43% EC 53.48 EC 90% DF 90.1% FIC	2.5	NS 1	NS	NS NS	NS	"Do not apply more than 1 pound active ingredient per acre for any application." "Do not apply more than one application per year." "Do not apply more than 1 pound active ingredient per acre for any application."
		3.96	1	NS	NS	NS	"Do not apply more than 1 pound active
		3.96	1	NS	NS	NS	
Fall		3.96	1	NS	NS	NS	
Fall							ingreatent per acre for any appreation.
Fall							"Do not apply more than one application per year."
						•	•
	43% EC 43% FIC 43% SC/L 43.5% EC 43.6% EC 53.48% EC 80% WP 85.5% DF 90% DF 90% DF 90% WP 90.1% DF 90.1% FIC	2.4	1	NS	NS	NS	"Do not apply more than 1 pound active ingredient per acre for any application." "Do not apply more than one application per year."
Foliar						1	
	43% EC 53.48% EC	2.5	NS	NS	NS	NS	"Do not apply more than 1 pound active ingredient per acre for any application."
							"Do not apply more than one application per year."

Site					Due	Minimum	
Application Type		Max. Single	Max. #	Max Annual	Pre- harvest	Retreatment	
Application Timing		Application Rate	Apps/	Application	Interval	Interval	
Application Equipment	Formulation	(lb ai/A)	season	Rate (lb ai/A)	(days)	(days)	Use Limitations
	43% EC	4	1	NS	NS	NS	"Do not apply more than 1 pound active
	43% FIC						ingredient per acre for any application."
	43% SC/L						
	43.5% EC						"Do not apply more than one application per
	43.6% EC						year."
	53.48% EC						
	80% WP						
	85.5% DF						
	90% DF						
	90% WP						
	90.1% DF						
	90.1% FIC						
When Needed						-	
	43% EC	2	NS	NS	NS	NS	"Do not apply more than 1 pound active ingredient per acre for any application."
							"Do not apply more than one application per year."
Ornamental And/or Shade Trees	•						•
Dormant							
	43% EC	4	1	NS	NS	NS	
	90% DF						
Early Spring				•			
	53.48% EC	4	1	NS	NS	NS	
	90.1% DF						
Established Planting							
	90% DF	3.96	1	NS	NS	NS	
Fall							
	53.48% EC	4	1	NS	NS	NS	
	90.1% DF						

Site					D		
Application Type		Max. Single	Max. #	Max Annual	Pre- harvest	Minimum Retreatment	
Application Timing		Application Rate	Apps/	Application	Interval	Interval	
Application Equipment	Formulation	(lb ai/A)	season	Rate (lb ai/A)	(days)	(days)	Use Limitations
Post-transplant							
	43% EC	4	1	NS	NS	NS	
	53.48% EC						
	90% DF						
	90.1% DF						
Pre-transplant							
	43% EC	4	1	NS	NS	NS	
	53.48% EC						
	90% DF						
	90.1% DF						
Transplant							
	43% EC	4	1	NS	NS	NS	
	90.1% DF						
Ornamental Lawns and Turf							
Dormant							
	23.6% FIC	4	1	NS	NS	NS	"This product must be watered in
	43% EC						immediately after application."
	43% FIC						
	43% SC/L						
	53.48% EC						
	90% DF						
Early Spring							·
	.58% G	1.98	NS	NS	NS	NS	"This product must be watered in
	.92% G						immediately after application."
	43% FIC						
	90% DF						
Early Winter				-			<u> </u>
	.92% G	.046 lb/1Kft ²	NS	NS	NS	NS	"This product must be watered in immediately after application."

ite	Application Type Application Timing Application Equipment	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations
		042% G	2	NS	NS	NS	NS	"This product must be watered in
		.57% G						immediately after application."
		.6% G						
		.63% G						
		.79% G						
		.83% G						
		.91% G						
		.92% G						
		1.05% G						
		1.11% G						
		1.15% G						
		1.16% G						
		1.28% G						
		1.41% G						
		1.5% G						
		43%EC						
		43% FIC						
		80% WP						
		85.5% DF						
		90% DF						
		90% WP						
liar								
		1.1% G	2.5	NS	NS	NS	NS	"This product must be watered in
		23.6% FIC						immediately after application."
		43% EC						
		43% FI43%						
		SC/L						
		53.48% EC						
		80% WP						
		90% DF						
Site Application Type Application Timing Application Equipment	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations	
---	--	--	---------------------------	---	---------------------------------------	--	---	
	.6% G .8% G 1.11% G 43% EC 43% FIC 43% SC/L 43.5% EC 43.6% EC 80% WP 90% DF 90.1% DF	4	NS	NS	NS	NS	"This product must be watered in immediately after application."	
Postplant	2011/0 21							
	.42% G .44% G .91% G	.75	NS	NS	NS	NS	"This product must be watered in immediately after application."	
Preemergence								
	90% DF	1.98	2	NS	NS	NS	"This product must be watered in immediately after application."	

Site Application Type Application Timing Application Equipment	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations
	.42% G	.048 lb/1Kft ²	NS	NS	NS	NS	"This product must be watered in
	.57% G						immediately after application."
	.6% G						
	.63% G						
	.79% G						
	.83% G						
	.91% G						
	.92% G						
	1.05% G						
	1.11% G						
	1.15% G						
	1.16% G						
	1.28% G						
	1.5% G						
Summer							
	.6% G	.046 lb/1Kft ²	NS	NS	NS	NS	"This product must be watered in
	1.05% G						immediately after application."
When Needed							
	08% G	2	NS	NS	NS	NS	"This product must be watered in
	.83% G						immediately after application."
	.92% G						
	1.22% G						
	1.41% G						
	43% EC						
Winter							
	.42% G	1.98	NS	NS	NS	NS	"This product must be watered in
	.63% G						immediately after application."
	.91% G						
	1.05% G						
	90% DF						
Ornamental Sod Farm (Turf)	-			-		-	-

Site							
Application Type		Mor Circle			Pre-	Minimum	
Application Timing		Max. Single Application Rate	Max. #	Max Annual	harvest	Retreatment	
Application Equipment	Formulation	(lb ai/A)	Apps/ season	Application Rate (lb ai/A)	Interval (days)	Interval (days)	Use Limitations
At Planting	1 officiation	(10 ul/11)	season		(uuys)	(duyb)	
tt Flanting	90% DF	3.96	NS	NS	NS	NS	"For muck or peat soils: do not apply more
	90% DF	3.90	IND	115	INS	INS	than 4 pounds active ingredient per acre for any application."
							"Do not apply more than 6 pounds active ingredient per year."
							<i>"For sandy soils</i> : do not apply more than 4 pounds active ingredient per acre for any application."
							"Do not apply more than 3 pounds active ingredient per year."
Dormant							
	53.48% EC 90% DF	2	NS	NS	NS	NS	<i>"For muck or peat soils</i> : do not apply more than 4 pounds active ingredient per acre for any application."
							"Do not apply more than 6 pounds active ingredient per year."
							<i>"For sandy soils</i> : do not apply more than 4 pounds active ingredient per acre for any application."
							"Do not apply more than 3 pounds active ingredient per year."
Early Spring							
	90% DF	2	NS	NS	NS	NS	<i>"For muck or peat soils</i> : do not apply more than 4 pounds active ingredient per acre for any application."
							"Do not apply more than 6 pounds active ingredient per year."
							<i>"For sandy soils</i> : do not apply more than 4 pounds active ingredient per acre for any application."
							"Do not apply more than 3 pounds active ingredient per year."
Fall	•			•	-	•	-

Site Application Type Application Timing Application Equipment	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations
	.45% G .92% G 43% EC 43% FIC 53.48% EC 85.5% DF 90% DF 90% WP	2	NS	NS	NS	NS	 <i>"For muck or peat soils</i>: do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 6 pounds active ingredient per year."</i> <i>"For sandy soils</i>: do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 3 pounds active ingredient per year."</i>
Foliar							ingrouoni por Jouri
	43% EC 43% FIC 53.48% EC 85.5% DF 90% DF 90% WP 43% EC	4	NS	NS	NS	NS	 <i>"For muck or peat soils</i>: do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 6 pounds active ingredient per year."</i> <i>"For sandy soils</i>: do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 3 pounds active ingredient per year."</i>
Late Winter		-					1
	43% EC 43% FIC 53.48% EC 85.5% DF 90% DF 90% WP 90.1% DF 43% EC	2	NS	NS	NS	NS	 <i>"For muck or peat soils</i>: do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 6 pounds active ingredient per year."</i> <i>"For sandy soils</i>: do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 3 pounds active ingredient per year."</i>

Site Application Type Application Timing Application Equipment	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations
	43% EC 43% FIC 53.48% EC 85.5% DF 90% DF 90% WP 90.1% DF	4	NS	NS	NS	NS	 <i>"For muck or peat soils</i>: do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 6 pounds active ingredient per year."</i> <i>"For sandy soils</i>: do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 3 pounds active ingredient per year."</i>
Post Plant							
	43% EC 43% FIC 53.48% EC 85.5% DF 90% DF 90% WP 90.1% DF	4	NS	NS	NS	NS	 <i>"For muck or peat soils</i>: do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 6 pounds active ingredient per year."</i> <i>"For sandy soils</i>: do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 3 pounds active ingredient per year."</i>
Post-transplant	•						
	80% WP	4	NS	NS	NS	NS	 <i>"For muck or peat soils</i>: do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 6 pounds active ingredient per year."</i> <i>"For sandy soils</i>: do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 3 pounds active ingredient per year."</i>

Site Application Type Application Timing Application Equipment	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations
	43% DC/L	4	NS	NS	NS	NS	 <i>"For muck or peat soils</i>: do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 6 pounds active ingredient per year."</i> <i>"For sandy soils</i>: do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 3 pounds active ingredient per year."</i>
Spring							
	.455G .92% G	.046 lb 1Kft ²	NS	NS	NS	NS	 <i>"For muck or peat soils:</i> do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 6 pounds active ingredient per year."</i> <i>"For sandy soils:</i> do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 3 pounds active ingredient per year."</i>
When Needed							
	43% EC 90% DF	3.96	NS	NS	NS	NS	 <i>"For muck or peat soils:</i> do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 6 pounds active ingredient per year."</i> <i>"For sandy soils:</i> do not apply more than 4 pounds active ingredient per acre for any application." <i>"Do not apply more than 3 pounds active ingredient per year."</i>
Rangeland	L			1		1	
Established Planting							

Site					Pre-	Minimum	
Application Type		Max. Single	Max. #	Max Annual	harvest	Retreatment	
Application Timing		Application Rate	Apps/	Application	Interval	Interval	
Application Equipment	Formulation	(lb ai/A)	season	Rate (lb ai/A)	(days)	(days)	Use Limitations
	43% EC	1	1	NS	NS	NS	
	90% DF						
March	_			_			
	90% DF	1	1	NS	NS	NS	
Preemergence							
	43% EC	1	1	NS	NS	NS	
Recreation Area Lawns							
Dormant							
	43% EC	2.5	NS	NS	NS	NS	
	43% FIC						
	43% SC/L						
	53.48% EC						
	90% DF						
Early Spring							
	43% FIC	1.98	NS	NS	NS	NS	
	90% DF						
Fall							
	1.05% G	0.046 lb 1Kft ²	NS	NS	NS	NS	
Foliar							
	43% Ec	2.5	NS	NS	NS	NS	
	43% FIC						
	43% SC/L						
	53.48% EC						
	90% Df						
Late Winter							
	80% Wp	2	2	NS	NS	NS	
	90% DF						
Post-plant							
	25% FIC	.75	NS	NS	NS	NS	

Site Application Type Application Timing Application Equipment	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations
Spring							·
	1.05% G	0.046 lb 1Kft ²	NS	NS	NS	NS	
Recreational Areas	•						
Fall							
	.45% G	0.046 lb 1Kft ²	NS	NS	NS	NS	
	.92% G						
Spring							
	.45% G	0.046 lb 1Kft ²	NS	NS	NS	NS	
	.92% G						
Residential Lawns							
Dormant							
	14% EC	2.5	NS	NS	NS	NS	"This product must be watered in
	23.6% FIC						immediately after application."
	43% EC						
	43% FIC						
	53.48% EC						
	90% DF						
Early Spring							
	14% EC	1.98	NS	NS	NS	NS	"This product must be watered in
	43% FIC						immediately after application."
	90% DF						
Early Summer				·		•	•
	14% Ec	0.046 lb 1Kft ²	NS	NS	NS	NS	"This product must be watered in immediately after application."
Fall	1					1	

Site Application Type Application Timing Application Equipment	Formulation	Max. Single Application Rate (lb ai/A)	Max. # Apps/ season	Max Annual Application Rate (lb ai/A)	Pre- harvest Interval (days)	Minimum Retreatment Interval (days)	Use Limitations
	.45% G .6% G .92% G 1.05% G 14% EC	0.046 lb 1Kft ²	NS	NS	NS	NS	"This product must be watered in immediately after application."
Foliar	•						
	23.6% FIC 43% EC 43% FIC 53.48% EC 90% DF	2.5	NS	NS	NS	NS	"This product must be watered in immediately after application."
Late Winter							
	.6% G 14% EC 80% WP 90% DF	2	NS	NS	NS	NS	"This product must be watered in immediately after application."
Mid-Winter	•						
	14% EC	0.046 lb 1Kft ²	NS	NS	NS	NS	"This product must be watered in immediately after application."
Post-Plant							-
	25% FIC	.75	NS	NS	NS	NS	"This product must be watered in immediately after application."
Spring	-			-		-	•
	.45% G 0.6% G .92% G 1.05% G 14% EC	0.046 lb 1Kft ²	NS	NS	NS	NS	"This product must be watered in immediately after application."

US EPA ARCHIVE DOCUMENT

Appendix B: STUDIES USED TO SUPPORT THE REREGISTRATION OF ATRAZINE

GUIDE TO APPENDIX B

Appendix B contains listing of data requirements which support the reregistration for active ingredients within the case atrazine covered by this IRED. It contains generic data requirements that apply to atrazine in all products, including data requirements for which a "typical formulation" is the test substance.

The data table is organized in the following formats:

- <u>Data Requirement</u> (Column 1). The data requirements are listed by Guideline Number. The Guideline Numbers accompanying each test refer to the test protocols set in the Pesticide Assessment Guidance available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161 (703) 487-4650.
- 2. <u>Use Pattern</u> (Column 2). This column indicates the use patterns for which the data requirements apply. The following letter designations are used for the given use patterns.
 - A. Terrestrial Food
 - B. Terrestrial Feed
 - C. Terrestrial Non-Food
 - D. Aquatic Food
 - E. Aquatic Non-Food Outdoor
 - F. Aquatic Non-Food Industrial
 - G. Aquatic Non-Food Residential

- H. Greenhouse Food
- I. Greenhouse Non-Food
- J. Forestry
- K. Residential
- L. Indoor Food
- M. Indoor Non-Food
- N. Indoor Medical
- O. Indoor Residential
- 3. Bibliographic Citation (Column 3). If the Agency has acceptable data in its files, this column list the identify number of each study. This normally is the Master Record Identification (MRID) number, but may be a "GS" number if no MRID number has been assigned. Refer to the Bibliography appendix for a complete citation of the study.

APPENDIX B. DOCUMENT Old New Guideline Guideline Number Number 61-1 830.1550 830.1600 61-2A 830.1620 830.1650 830.1670 61-2B EPA ARCHIVE 62-1 830.1700 62-2 830.1750 830.1800 62-3 830.6302 63-2 830.6303 63-3 830.6304 63-4 830.7050 None 830.7200 63-5 830.7220 63-6 830.7300 63-7 SN

PPENDIX B. Data Supporting Guideline Requirements for the Reregistration of Atrazine

Study Title

PRODUCT CHEMISTRY

CITATION(S)

MRID Number

40566501, 43188901, 43505801

00142160, 42043501, 43188901

00142160, 00164821, 42043501, 42211401, 42873701, 42925201,

40566501, 42925201, 43188901

00142160, 00164821, 42873701

00023548, 43016501, 43188902

40566501

44488801

00142160

00142160

00142160

data gap

not applicable

00142160,00164822

Use Pattern

All

DATA REQUIREMENT

Product Identity and Composition

Formation of Impurities

Preliminary Analysis

Certification of Limits

UV/Visible Absorption

Analytical Method

Physical State

Melting Point

Boiling Point

Density

Color

Odor

Starting Materials and Manufacturing Process

DATA REQUIREMENT CITATION(S) Old **New Guideline** Guideline **Study Title Use Pattern MRID** Number Number Number 830.7840 63-8 Solubility All 00023497, 43337901 830.7860 830.7950 63-9 Vapor Pressure All 00142160, 00164822 00022855 830.7370 63-10 Dissociation Constant in Water All 63-11 Partition Coefficient (Octanol/Water) 830.7550 00142160, 00164822, 43337901 All 830.7560 830.7570 830.7000 63-12 pН All 00142160, 43337901 830.6313 63-13 Stability All 00023497, 00023548, 00023963, 43337901, 43796001 830.6314 63-14 Oxidizing/Reducing Action All 43016501, 43188902 830.6315 63-15 Flammability All not applicable 830.6316 63-16 Explodability All 43016501, 43188902 830.6317 63-17 Storage Stability All 0023548, 43395501 830.7100 63-18 Viscosity All not applicable 830.6319 63-19 Miscibility All not applicable 830.6320 63-20 **Corrosion Characteristics** All 00142160, 43016501, 43188902 ECOLOGICAL EFFECTS 850.2100 71-1 Avian Acute Oral Toxicity Test 00024721 (parent) ABCJK data gap (3 major degradates)

		DATA REQUIREMENT		CITATION(S)
New Guideline Number	Old Guideline Number	Study Title	Use Pattern	MRID Number
850.2200	71-2	Avian Dietary Toxicity	ABCJK	00022923
850.2300	71-4	Avian Reproduction	ABCJK	42547102, 42547101
850.1075	72-1 (a & b)	Fish Acute Toxicity - Freshwater	ABCJK	00024717, 00024716 (parent) data gap (major degradate)
850.1010	72-2	Acute Aquatic Invertebrate Toxicity	ABCJK	00024377 (parent) data gap (major degradate)
850.1075	72-3a	Acute Estuarine/Marine Toxicity - Fish	ABCJK	43344901 (parent), data gap (major degradate)
850.1025	72-3b	Acute Estuarine/Marine Toxicity - Invertebrate (Mollusk)	ABCJK	data gap (parent and major degradate)
	72-3c	Estuarine/Marine Toxicity - Invertebrate (Shrimp)	ABCJK	43344902 (parent) data gap (major degradate)
850.1400	72-4a	Early Life-Stage Fish (Freshwater)	ABCJK	45208304
	72-4a	Early Life-Stage Fish (Marine)	ABCJK	data gap 45202920 (upgradable)
850.1300	72-4b	Life-Cycle Aquatic Invertebrate	ABCJK	00024377
850.1350	72-4b	Life-Cycle Marine Invertebrate	ABCJK	45202920, data gap
850.1500	72-5	Life-Cycle Fish	ABCJK	00024377
850.4225 850.4230	123-1a	Seedling Germination/Seedling Emergence	ABCJK	42041403

		DATA REQUIREMENT		CITATION(S)
New Guideline Number	Old Guideline Number	Study Title	Use Pattern	MRID Number
850.4250	1231b	Vegetative Vigor	ABCJK	42041402
850.4400	123-2	Aquatic Plant Growth	ABCJK	41065203a & b 43074801, 43074802, 43074803
850.3020	141-1	Nontarget Insect Acute Contact Toxicity (Honey Bee)	ABCJK	00036935
		<u>TOXICOLOGY</u> - Parent Atrazine		
870.1100	81-1	Acute Oral - Rat	All	00024706, 00027097 Accession No. 230303
870.1200	81-2	Acute Dermal - Rabbit	All	00024708, 00027097 Accession Nos. 230303; 231466
870.1300	81-3	Acute Inhalation - Rat	All	42089901, 43016502
870.2400	81-4	Primary Eye Irritation - Rabbit	All	Accession No. 230303 00024709
870.2500	81-5	Primary Dermal Irritation - Rabbit	All	Accession No. 230303 00024709, 00024710
870.2600	81-6	Dermal Sensitization	All	00105131
870.3100	82-1	90-Day Feeding	All	44723701
870.3200	82-2	21-Day Dermal Toxicity - Rat	All	42089902
870.3700	83-3	Developmental Toxicity	All	41065201, 00143008, 40566302 Accession No. 254979 00143006, 40566301
870.3800	83-4	Reproduction and Fertility Effects - 2 Generation Repro	All	40431303, 42743903

		DATA REQUIREMENT		CITATION(S)
New Guideline Number	Old Guideline Number	Study Title	Use Pattern	MRID Number
870.4100 870.4300	83-1A 83-5	Chronic Feeding Toxicity - Rodent Combined Chronic Toxicity/Carcinogenicity	All	40629302, 42227001, 43934402, 00158930, 43532001
870.4100	83-1B	Chronic Feeding Toxicity - Non-Rodent (dog)	All	40431301
870.4200	83-2A	Oncogenicity - Rat	All	40629302, 42227001, 42204401, 43934402, 00158930
870.4200	83-2B	Oncogenicity - Mouse	All	40431302
non-guideline	non-guideline	Special Studies - Neurotoxicity	All	44152102, 43934406, 45166902, 45166901
870.5100	84-2	Bacterial Reverse Mutation Assay	All	00060642, 40246601
870.5385	84-2	Micronucleus Assay	All	40722301
870.5450	84-2	Rodent Dominant Lethal Assay	All	42637003
870.5550	84-2	UDS Assay	All	00161790, 40722301, 42547105
870.7485	85-1	General Metabolism	All	40431304, 40431305, 40431306, 42165503, 44713802, 40437501
870.7600	85-2	Dermal Absorption	All	43314302 (rat) 44152114 (human)
non-guideline	non-guideline	Special Studies - Assays of Direct Estrogenic Activity of Triazines	All	43598617, 43598618, 43598619, 43934403
non-guideline	non-guideline	Special Study - Estrous Cycle Alterations and LH Surge Attenuation - Method Validation	All	43934405
non-guideline	non-guideline	Special Study - Estrous Cycle Alterations and LH Surge Attenuation - Pilot	All	43934404

DATA REQUIREMENT CITATION(S) Old New Guideline Guideline **Study Title Use Pattern MRID** Number Number Number Special Study - Estrous Cycle Alterations and LH Surge non-guideline non-guideline All 43934406 Attenuation - 28-day non-guideline non-guideline Special Study - Estrous Cycle Alterations and LH Surge 44152102 All Attenuation - 6-month non-guideline non-guideline Special Study - Hormone and Estrous Cycle Measurements in All 42085001, 42743902, 43598622 **SD** Rats non-guideline non-guideline Special Study - Mammary Gland and Ovarian All 43598622, 42085001, 42743902 Histomorphology in SD Rats Special Study - Two-Year Bioassay in F-344 Rats 42146101, 42743902, 43598622 All non-guideline non-guideline non-guideline Special Study - Hormone and Estrous Cycle Measurements in 42743902, 42146101, 43598622 non-guideline All F-344 Rats Special Study - Mammary Gland and Ovarian non-guideline non-guideline 43598622, 42146101, 42743902, All Histomorphology in F-344 Rats 44917701 Special Study - Two-year Bioassay with the SD Strain of Rate 42204401 non-guideline non-guideline All Special Study - Tumor Incidence in Ovariectomized (OVX) vs 44544701 non-guideline non-guideline All Intact Animals non-guideline non-guideline Special Study - Sexual Maturation All 45058702, 45722401 Unaudited draft report of the interim non-guideline non-guideline Long-Term Estrous Cycle Measurements All estrous cycle data from 44544701 Direct Comparison of LH Surge Attenuation of Atrazine, non-guideline non-guideline All 45471002, 45058701 Simazine, and Dact

		DATA REQUIREMENT		CITATION(S)
New Guideline Number	Old Guideline Number	Study Title	Use Pattern	MRID Number
non-guideline	non-guideline	Other published literature	All	Cooper et al. 1996 Shafer et al. 1999 Das et al. 2000 Cummings et al. 2000 Narotsky et al. 2000 Laws et al. 2000 Stoker et al. 2000
	-	<u>TOXICOLOGY</u> - Degradate DACT		
870.1100	81-1	Acute Oral - Rat	All	43013201
870.3100	82-1A	Subchronic Oral Toxicity in Rats	All	43013207
870.3150 870.4100	82-1B 83-1B	Subchronic & Chronic Oral Toxicity in Dogs	All	41392401
870.3700	83-3	Developmental Toxicity in Rats	All	41392402
870.5100	84-2	Mutagenicity Study - Bacterial Reverse Mutation	All	40722302
870.5550	84-2	Mutagenicity Study - UDS Assay	All	40722303
		TOXICOLOGY - Degradate Desisopropyl Atra	zine	
870.1100	81-1	Acute Oral - Rat	All	43013201
870.3100	82-1A	Subchronic Oral Toxicity in Rats	All	43013205
870.3150	82-1B	Subchronic Oral Toxicity in Dogs	All	43013203
870.3700	83-3	Developmental Toxicity in Rats	All	43013208
870.5100	84-2	Mutagenicity Study - Bacterial Reverse Mutation Assay	All	43093101

			CITATION(S)	
New Guideline Number	Old Guideline Number	Study Title	Use Pattern	MRID Number
870.5385	84-2	Mutagenicity Study - Mammalian Bone Marrow Chromosome Aberration Test	All	43093103
870.5550	84-2	Mutagenicity Study - UDS Assay	All	43093105
		TOXICOLOGY - Degradate Deethyl Atrazin	e	
870.1100	81-1	Acute Tox - Rat	All	43013202
870.3100	82-1A	Subchronic Oral Toxicity in Rats	All	43013206
870.3150	82-1B	Subchronic Oral Toxicity in Dogs	All	43013203
870.3700	83-3	Developmental Toxicity in Rats	All	43013209
870.5100	84-2	Mutagenicity Study - Bacterial Reverse Mutation Assay	All	43093102
870.5385	84-2	Mutagenicity Study - Mammalian Bone Marrow Chromosome Aberration Test	All	43093104
870.5550	84-2	Mutagenicity Study - UDS Assay	All	43093106
		<u>TOXICOLOGY</u> - Degradate Hydroxyatrazin	e	
870.3100	82-1A	Subchronic Oral Toxicity in Rats	All	41293501
870.3700	83-3	Developmental Toxicity in Rats	All	41065202
870.4100 870.4300	83-1A 83-5	Chronic Toxicity - Rat	All	43532001
870.5100	84-2	Mutagenicity Study - Bacterial Reverse Mutation Assay	All	40722304
870.5385	84-2	Mutagenicity Study - Mammalian Bone Marrow Chromosome Aberration Test	All	41479401

		DATA REQUIREMENT		CITATION(S)
New Guideline Number	Old Guideline Number	Study Title	Use Pattern	MRID Number
870.5550	84-2	Other Genetic Effects	All	40722305, 40888101
		EPIDEMIOLOGY	-	
non-guideline	non-guideline	Cancer Epidemiologic Studies - Submitted to EPA	All	45152101, 45518401, 44008601
non-guideline	non-guideline	Cancer Epidemiologic Studies - Other Published Literature	All	Alvanja et al. 2003 Breckenridge 2002 Breckenridge 2003 MacLennan et al. 2002 MacLennan et al. 2003 Mills 1998
		OCCUPATIONAL/RESIDENTIAL EXPOSU	<u>RE</u>	
875.1100 875.1300 875.1500	231 232 235	Applicator Exposure Monitoring (Dermal outdoor exposure, Inhalation outdoor exposure, Biological monitoring)	ABCJK	43934416, 43934417, 43934418, 44152109, 44152110, 44152111, 44315403, 44315404, 43598604
875.1500	235	Biological Monitoring	ABCJK	44597605 44597606
875.1100	231	Dermal Exposure	ABCJK	43016506
875.1100 875.1300	231 232	Exposure Monitoring (ORETF)	ABCJK	44972201
875.2100	132-1	Foliar Dislodgeable Residue Dissipation	ABCJ	44883601
875.2100	132-1	Transferable Residue Dissipation: Lawn and Turf	СК	44958001, 44958801, 45517301
840.1100	201-1 202-1	Droplet Size Spectrum Drift Field Evaluation	ABCJK	data gap

		DATA REQUIREMENT		CITATION(S)
New Guideline Number	Old Guideline Number	Study Title	Use Pattern	MRID Number
non-guideline	non-guideline	Dermal Transfer Efficiency of Granular Atrazine Residues From Turf to Dry and Wetted Palms	СК	45622310, 45622311
non-guideline	non-guideline	Exposure Assessments	ABCJK	44152106, 44152108, 45399905, 44597604
		ENVIRONMENTAL FATE		
835.2120	161-1	Hydrolysis of Parent and Degradates	ABCJK	40431319
835.2240	161-2	Photodegradation - Water	ABCJK	42089904, 45545301
835.2410	161-3	Photodegradation - Soil	ABCJK	40431320 42089905
835.2370	161-4	Photodegradation - Air	ABCJK	not applicable
835.4100	162-1	Aerobic Soil Metabolism	ABCJK	42089906
835.4200	162-2	Anaerobic Soil Metabolism	ABCJK	42089906
835.4400	162-3	Anaerobic Aquatic Metabolism	ABCJK	40431323
835.4300	162-4	Aerobic Aquatic Metabolism	ABCJK	data gap
835.1240	163-1	Leaching/Adsorption/Desorption	ABCJK	40431324, 40431325, 40431326, 40431327, 40431328
835-1410	163-2	Volatility-Lab	ABCJK	data gap
835.6100	164-1	Terrestrial Field Dissipation	ABCJK	42165504, 42165505, 40431336, 42165506, 40431337, 42165507
835.1200	164-2	Aquatic (sediment) Dissipation	ABCJK	not applicable
835.1300	164-3	Forestry Dissipation	ABCJK	40431340, 42041405

		DATA REQUIREMENT		CITATION(S)
New Guideline Number	Old Guideline Number	Study Title	Use Pattern	MRID Number
835.1500	164-5	Soil, Long Term Dissipation	АВСЈК	40431339, 42089911, 40431337, 42089912, 40431338, 42089909, 40431336, 42089910
850.1730	165-4	Bioaccumulation in Fish	ABCJK	40431344
850.1950	165-5	Bioaccumulation in Non-Target Organisms	ABCJK	data gap
		ENVIRONMENTAL FATE - DRINKING WATER MONIT	FORING DAT	<u>A</u>
non-guideline	non-guideline	Atrazine Drinking Water Monitoring Data (PLEX & VMP)	All	43598634, 43934413, 43934414, 44152122, 44152123, 44152124, 44315414, 44597601, 44711001, 44856901, 44997001, 44997003, 45058703, 45058704, 45145601, 45209601, 45253401, 45475101, 45475102, 45545305, 45622305
non-guideline	non-guideline	Atrazine Drinking Water Monitoring Data (ARP)	All	45728401, 45730200, 45722700 Acetochlor Registration Partnership (ARP) Final Report for the State Monitoring Program
non-guideline	non-guideline	Atrazine Rural Well Monitoring Data	ALL	data gap
non-guideline	non-guideline	Atrazine Ground-Water Monitoring Data	All	43934414, 44222601, 44222602, 45399906, 45545304, data gap
		RESIDUE CHEMISTRY		

		DATA REQUIREMENT		CITATION(S)
New Guideline Number	Old Guideline Number	Study Title	Use Pattern	MRID Number
860.1300	171-4A	Nature of Residue - Plants	AB	00023324 00023529 00022474 00024786 00055672 00149428 00161854 00016306 41209801 42547116 42547115 43016503 43048501 43598628 43598629 44152119 44152120 44152121 44315408 44315409
860.1300	171-4B	Nature of Residue - Livestock	AB	00022857 00038297 00161854 00016306 00038294 40431352 40431353 40431354 40431355 40431356 40431357 40437502 41209802 41209803 41209804 41209806 41209807 41209808 42925601 43508501 43934412
860.1340	171-4C	Residue Analytical Method - Plants	AB	00016401 00016402 00016403 00023499 00023502 00024480 00024482 00055644 00093520 40431365 41397102 42547118 42547119 43016504 44315412 43395502
860.1340	171-4D	Residue Analytical Method - Animals	AB	00023280 00023502 00161854 40431364 40431369 40431370 40431422 40431424 41397103 42547120 42547121 42547122 42547123
860.1360		Multiresidue Methods	AB	41423401, data gap

	DATA REQUIREMENT			CITATION(S)
New Guideline Number	Old Guideline Number	Study Title	Use Pattern	MRID Number
860.1380	171-4E	Storage Stability	AB	00024482 40431421 40431426 41258601 41258602 41258603 41397101 43395503, data gap
860.1480	171-4J	Magnitude of Residues - Meat, Milk, Poultry, Eggs Milk and the Fat, Meat, and Meat Byproducts of Cattle, Goats, Hogs, Horses, and Sheep Eggs and the Fat, Meat, and Meat Byproducts of Poultry	AB	00026977, 00080629, 00093524, 40431424 40431422, 40431423
860.1500	171-4K	Crop Field Trials - Macadamia Nuts	AB	00024799, 40431418
860.1500	171-4K	Crop Field Trials - Corn, field and sweet, K+CWHR	AB	00094135, 00093523, 40431401, 42547117, 43598630, 44152117, 44315410, 44597602, 45399901
860.1500	171-4K	Crop Field Trials - Sorghum grain	AB	00093523, 40431383, 43598631, 43598632, 44152118, 44315411, 44597603, 45399902
860.1500	171-4K	Crop Field Trials - Wheat grain	AB	00024475, 40431420, 43160502
860.1500	171-4K	Crop Field Trials - Corn forage and stover	AB	00093520 00093523 00094135 40431401 43598630 44152117 44315410 44597602
860.1500	171-4K	Crop Field Trials - Sorghum forage and stover	AB	00093523 40431383 43598631 43598632 44315411 44597603
860.1500	171-4K	Crop Field Trials - Wheat forage, fodder, straw, grasses, and forage	AB	00024475 00067425 40431420 43160502 data gap

DATA REQUIREMENT CITATION(S) Old New Guideline Guideline **Study Title Use Pattern MRID** Number Number Number 00024487 860.1500 171-4K Crop Field Trials - Orchardgrass, orchardgrass hay, rye, AB perennial Crop Field Trials - RangeGrasses 860.1500 171-4K AB 00126712 data gap Crop Field Trials - Guava 00055643 860.1500 171-4K AB Crop Field Trials -Sugarcane 860.1500 171-4K AB 00115588, 43160504 860.1520 171-4L Processed Foods (Corn) AB 43160505 860.1520 171-4L Processed Foods (Sorghum) AB 43160503 860.1520 171-4L Processed Foods (Sugarcane) AB 43160504, 43395504 860.1520 171-4L AB 43160502 Processed Foods (Wheat) 860.1850 165-1 **Confined Rotational Crop** AB 43016505 860.1900 165-2 Field Rotational Crop AB 43160501 **PROBABILISTIC ASSESSMENTS** non-guideline Probabilistic Drinking Water Exposure Assessment All 45503101, 45503102, 45622306, non-guideline 45629401, 45711308 non-guideline non-guideline Probabilistic Ecological Risk Assessment All 45299501, 45299505, 45622302, 45622303

US EPA ARCHIVE DOCUMENT

Appendix C: TECHNICAL SUPPORT DOCUMENTS

Additional documentation in support of this IRED is maintained in the OPP docket, located in Room 119, Crystal Mall #2, 1921 Jefferson Davis Highway, Arlington, VA. It is open Monday through Friday, excluding legal holidays, from 8:30 am to 4 pm.

The docket initially contained the February 14, 2001 preliminary human health risk assessment, and the September 26, 2001 preliminary ecological fate and effects risk assessment and related documents. EPA then considered comments on these risk assessments, revised the risk assessments, and added the formal "Response to Comments" documents and the revised risk assessments to the docket in May 2002. Additional response to comments documents and documents and documents supporting the IRED were published in January 2003.

All documents, in hard copy form, may be viewed in the OPP docket room or downloaded or viewed via the Internet at the following sites:

www.epa.gov/pesticides/op http://cascade.epa.gov/RightSite/dk_public_home.htm

These documents include:

SRRD Documents:

- Atrazine Memorandum of Understanding. January 31, 2003
- Atrazine Summary. May 2, 2002
- Atrazine Overview. May 2, 2002

HED Documents:

IRED Supporting Documents

- Atrazine: Addendum to Revised Human Health Risk Assessment for the Reregistration Eligibility Decision (RED) dated April 16, 2002. January 31, 2003
- Atrazine: Reassessment of DWLOC value for use in human health risk assessment. January 31, 2003
- Atrazine: Addendum to Revised Occupational and Residential Exposure Assessment and Recommendations for the Reregistration Eligibility Decision Document. January 31, 2003
- Atrazine: Response to Public Comments on the EPA's April 16, 2002, Revised Human Health Risk Assessment and Associated Documents for the Reregistration Eligibility Decision (RED). January 31, 2003
- Review of Additional Data on Potential Atrazine Exposure and Review Comments Submitted by Syngenta and NRDC on Atrazine Cancer Epidemiology Study: "Follow-up Study of Cancer Incidence Among Workers in Triazine-related Operations at the Novartis St. Gabriel Plant" by Elizabeth Delzell et al. January 15, 2003.

• Atrazine: Response to Syngenta's Comments on the EPA's April 16, 2002, Revised Human Health Risk Assessment and Associated Documents for the Reregistration Eligibility Decision (RED). November 22, 2002

Revised Risk Assessments and Supporting Documents

- Atrazine: HED's Revised Human Health Risk Assessment for the Reregistration Eligibility Decision (RED). April 16, 2002
- Atrazine: Response to Public Comments on the EPA's January 19, 2001, Revised Preliminary Human Health Risk Assessment and Associated Documents for the Reregistration Eligibility Decision (RED). April 16, 2002
- Atrazine: Response to Syngenta's Comments on the EPA's January 19, 2001, Revised Preliminary Human Health Risk Assessment and Associated Documents for the Reregistration Eligibility Decision (RED). April 16, 2002
- Atrazine/DACT Reassessment Report of the FQPA Safety Factor Committee. April 8, 2002
- Atrazine/DACT Fourth Report of the Hazard Identification Assessment Review Committee. April 5, 2002
- Atrazine: Metabolism Assessment Review Committee. Residues to be Regulated and Residues of Concern for Dietary Assessment. November 15, 2000
- Atrazine: Toxicology Chapter of the Reregistration Eligibility Decision. Second Revision. April 11, 2002
- Atrazine: HED Product and Residue Chemistry Chapters. April 16, 2002
- Atrazine: Revised Occupational and Residential Exposure Assessment and
- Recommendations for the Reregistration Eligibility Decision Document. April 25, 2002
- Response to Comments from Sipcam Agro. April 18, 2002
- Atrazine: Review of Probabilistic Exposure Assessment for Drinking Water from 28 Community Water Systems. April 23, 2002.
- Addendum and Corrections to Occupational and Residential Exposure Chapter for Atrazine. May 23, 2002.
- Review of Atrazine Cancer Epidemiology Studies: "A Follow-up Study of Mortality Among Workers at the Novartis St. Gabriel Plant" "Follow-up Study of Cancer Incidence Among Workers in Triazine-related Operations at the Novartis St. Gabriel Plant" both by Elizabeth Delzell et al. March 25, 2002.
- Review of Atrazine Cancer Epidemiology Study "Follow-up Study of Cancer Incidence Among Workers in Triazine-related Operations at the Novartis St. Gabriel Plant" by Elizabeth Delzell et al. December 13, 2001.

Preliminary Risk Assessments and Supporting Documents

- EPA's Response to Syngenta's Comments on the Preliminary Human Health Risk Assessment for Atrazine in Support of the Reregistration, Tolerance Reassessment, and Special Review. January 23, 2001
- Atrazine Drinking Water Exposure Assessment for Atrazine and Various Chloro-Triazine and Hydroxy-Triazine Degradates. January 23, 2001

- Atrazine Toxicology Chapter of the Reregistration Eligibility Decision Revised. January 19, 2001
- Atrazine HED's Revised Preliminary Human Health Risk Assessment for the Reregistration Eligibility Decision (RED). January 19, 2001
- Atrazine Anticipated Residues and Acute and Chronic Dietary Exposure Assessments for Atrazine, Revised January 2001. January 18, 2001
- Atrazine HED Product and Residue Chemistry Chapters. January 18, 2001
- Atrazine Occupational and Residential Exposure Assessment and Recommendations for the Reregistration Eligibility Decision Document. January 18, 2001
- Atrazine 3rd Report of the Hazard Identification Assessment Review Committee. December 21, 2000
- Atrazine Evaluation of Carcinogenic Potential. December 13, 2000
- Atrazine Reevaluation by the FQPA Safety Factor Committee. November 14, 2000
- Atrazine Cancer Peer Review Committee Meetings Provisional Conclusions. November 1, 2000
- Review of Atrazine Incident Reports. October 31, 2000
- Diaminochlorotriazine (DACT) Report of the Hazard Identification Assessment Review Committee. August 28, 2000
- Hydroxyatrazine Report of the Hazard Identification Assessment Review Committee. August 28, 2000

EFED Documents:

IRED Supporting Documents

- EPA Response to Comments from Syngenta and its Contractors, the Triazine Network, the Center for Regulatory Effectiveness, the American Water Works Association, the State of New York Office of Attorney General, the U.S. Department of Interior Fish and Wildlife Service, the California Regional Water Control Board, the American Farm Bureau Federation, and the Louisiana Farm Bureau Federation, about the EPA Reregistration Eligibility Science Chapter for Atrazine, Environmental Fate and Effects Chapter, dated April 22, 2002. March 2003 (*Replaces January 2003 Response to Comments document*)
- Reregistration Eligibility Science Chapter for Atrazine: Environmental Fate and Effects Chapter (and Appendices). January 31, 2003
- EPA Response to Comments. January 28, 2003

Revised Risk Assessments and Supporting Documents

- Reregistration Eligibility Science Chapter for Atrazine. Environmental Fate and Effects Chapter (and appendices). April 22, 2002.
- EFED Review of Comments from Syngenta and Its Contractors About the EPA Revised Environmental Risk Assessment for Atrazine. April 22, 2002
- EFED Review of Public Comments in Reponse to the EPA Revised Environmental Risk

Assessment for Atrazine. April 10, 2002

• Response to Comments Contained in Attachment 6 of Syngenta's Comments on "Atrazine. HED's Revised Human Health Risk Assessment for the Reregistration Eligibility Document." April 9, 2002

Preliminary Risk Assessments and Supporting Documents

• Response to Syngenta's Error Corrections of EPA's Atrazine RED and Environmental Fate and Effects Chapter (including Appendices). March 16, 2001

Appendix D: CITATIONS CONSIDERED TO BE PART OF THE DATA BASE SUPPORTING THE INTERIM REREGISTRATION DECISION (BIBLIOGRAPHY)

GUIDE TO APPENDIX D

- 1. CONTENTS OF BIBLIOGRAPHY. This bibliography contains citations of all studies considered relevant by EPA in arriving at the positions and conclusions stated elsewhere in the Reregistration Eligibility Document. Primary sources for studies in this bibliography have been the body of data submitted to EPA and its predecessor agencies in support of past regulatory decisions. Selections from other sources including the published literature, in those instances where they have been considered, are included.
- 2. UNITS OF ENTRY. The unit of entry in this bibliography is called a "study." In the case of published materials, this corresponds closely to an article. In the case of unpublished materials submitted to the Agency, the Agency has sought to identify documents at a level parallel to the published article from within the typically larger volumes in which they were submitted. The resulting "studies" generally have a distinct title (or at least a single subject), can stand alone for purposes of review and can be described with a conventional bibliographic citation. The Agency has also attempted to unite basic documents and commentaries upon them, treating them as a single study.
- 3. IDENTIFICATION OF ENTRIES. The entries in this bibliography are sorted numerically by Master Record Identifier, or "MRID" number. This number is unique to the citation, and should be used whenever a specific reference is required. It is not related to the six-digit "Accession Number" which has been used to identify volumes of submitted studies (see paragraph 4(d)(4) below for further explanation). In a few cases, entries added to the bibliography late in the review may be preceded by a nine character temporary identifier. These entries are listed after all MRID entries. This temporary identifying number is also to be used whenever specific reference is needed.
- 4. FORM OF ENTRY. In addition to the Master Record Identifier (MRID), each entry consists of a citation containing standard elements followed, in the case of material submitted to EPA, by a description of the earliest known submission. Bibliographic conventions used reflect the standard of the American National Standards Institute (ANSI), expanded to provide for certain special needs.
 - a Author. Whenever the author could confidently be identified, the Agency has chosen to show a personal author. When no individual was identified, the Agency has shown an identifiable laboratory or testing facility as the author. When no author or laboratory could be identified, the Agency has shown the first submitter as the author.

- b. Document date. The date of the study is taken directly from the document. When the date is followed by a question mark, the bibliographer has deduced the date from the evidence contained in the document. When the date appears as (1999), the Agency was unable to determine or estimate the date of the document.
- c. Title. In some cases, it has been necessary for the Agency bibliographers to create or enhance a document title. Any such editorial insertions are contained between square brackets.
- d. Trailing parentheses. For studies submitted to the Agency in the past, the trailing parentheses include (in addition to any self-explanatory text) the following elements describing the earliest known submission:
 - (1) Submission date. The date of the earliest known submission appears immediately following the word "received."
 - (2) Administrative number. The next element immediately following the word "under" is the registration number, experimental use permit number, petition number, or other administrative number associated with the earliest known submission.
 - (3) Submitter. The third element is the submitter. When authorship is defaulted to the submitter, this element is omitted.
 - (4) Volume Identification (Accession Numbers). The final element in the trailing parentheses identifies the EPA accession number of the volume in which the original submission of the study appears. The six-digit accession number follows the symbol "CDL," which stands for "Company Data Library." This accession number is in turn followed by an alphabetic suffix which shows the relative position of the study within the volume.

BIBLIOGRAPHY

MRID	Citation
00002875	Frear, D. E. H. and J. E. Boyd. 1967. Use of <i>Daphnia magna</i> for the microbioassay of pesticides. I. Development of standardized techniques for rearing <i>Daphnia</i> and preparation of dosage-mortality curves for pesticides. J. Econ. Entomol. 60(5):1228-1236.
00016306	Hermes, P. (1972) Biphasic Extraction of Radioactive Metabolites from Treated Biological Material. Method no. AG-214 dated Aug 15, 1972. (Unpublished study received Sep 26, 1974 under 5F1606; submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL: 094385-Q)
00016401	Cannizzaro, R.D.; Li, C. (1972) Determination of Atrazine Residues in Dry Crops by Gas Chromatography. Method no. AG-145 dated Nov 29, 1972. (Unpublished study received Feb 18, 1977 under 100-583; submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL: 228126-L)
00016402	Cullen, T.; Balu, K. (1972) Determination of 2-Chloro-4,6-diamino s-triazine (G-28273) Residues in Sorghum by Gas Chromatography. Method no. AG-232 A dated Dec 20, 1972. (Unpublished study received Feb 18, 1977 under 100-583; submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL:228126-M)
00016403	Cheung, M.W.; Hsieh, K. (1974) Determination of Atrazine, G-30033, and G-28279 Residues in Rangeland Forage by Gas Chromatography. Method no. AG-269 dated Seted by Ciba-Geigy Corp., Greensboro, Method no. AG-269 dated Sep 12, 1974. (Unpublished study received Feb 18, 1977 under 100-583; submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL:228126-O)
00022474	Malina, M. (1964) Dissipation of Banvel D from Bermuda Grass (Ap- plied 6/28/63 in Texas): Report No. 3. (Unpublished study re- ceived Aug 30, 1965 under 6F0466; submitted by Velsicol Chemical Corp., Chicago, Ill.; CDL:090517-G)
00022855	Esser, H.O.; DuPuis, G.; Ebert, E.; et al. (1974) s-Triazines. Pages 129-208,~In~Without Title . By N.P. (Also~In~unpub- lished submission received Oct 7, 1977 under 100-566; submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL:231969-C)
00022857	Bakke, J.E.; Larson, J.D.; Price, C.E. (1972) Metabolism of Atrazine and 2- Hydroxyatrazine by the rat. Journal of Agricultural and Food Chemistry 20(3):602-607. (Also~In~unpublished submission received Oct 7, 1977 under 100-566; submitted by Ciba-Geigy Corp., Greensboro, N.C.,; CDL:231969-F)

00022923	Hill, E.F.; Heath, R.G.; Spann, J.W.; et al. (1975) Lethal Dietary Toxicities of Environmental Pollutants to Birds: Special Scien- tific ReportWildlife No. 191. (U.S. Dept. of the Interior, Fish and Wildlife Service, Patuxent Wildlife Research Center; unpublished report)
00023280	Mattson, A.M.; Solga, J. (1966) The Determination of Atrazine, Simazine and Prometryne in Cow's Milk by Gas Chromatography. Method dated Nov 11, 1966. (Unpublished study received Jul 15, 1968 under 7F5034; submitted by Geigy Chemical Co., Ardsley, N.Y.; CDL:092912-A)
00023324	Ciba-Geigy Corporation (19??) The Uptake of Atrazine by Corn Plants from a Post-emergence Application. (Unpublished study received May 17, 1960 under 100-439; CDL:120785-E)
00023497	Ciba-Geigy Corporation (19??) Name, Chemical Identity and Composition of Atrazine. (Unpublished study received Aug 10, 1973 un- der 4F1425; submitted by BASF Wyandotte Corp., Parsippany, N.J.; CDL:093800-A)
00023499	Kahrs, R.A.; Gemma, A.A. (1970) Determination of Atrazine Residues in Bermuda Grass by Microcoulometric Gas Chromatography. Method AG-126 dated Jan 29, 1970. (Unpublished study received Aug 10, 1973 under 4F1425; submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL:0938-C)
00023502	Geigy Chemical Corporation (19??) The Determination of Chlorotriazine Residues in Plant Material, Animal Tissues and Water Using the Ultraviolet Method: Anng, Including a Description of the the Ultraviolet Method: Analytical Bulletin No. 7. (Unpublished study received Aug 10, 1973 under 4F1425; CDL:093800-F)
00023529	Humphreys, T.E. (1961) The Metabolism of Atrazine by Sugarcane Plants following Soil Application of the Herbicide. (Unpublished study received Apr Project Number: HWI 6117-178: 51-91. lished study received Apr 5, 1961 under 100-439; submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL:101149-A)
00023543	Foy, C. L. and H. Hiranpradit. 1977. Herbicide movement with water and effects of contaminant levels on non-target organisms. Virginia Polytech. Instit. State Univ., VA Water Resources Res. Center, OWRT Proj. A-046-VA. 89 p.
00023544	Torres, A. M. R. and L. M. O'Flaherty. 1976. Influence of pesticides on <i>Chlorella</i> , <i>Chlorococcum</i> , <i>Stigeoclonium</i> (Chlorophyceae), <i>Tribonema</i> , <i>Vaucheria</i> (Xanthophyceae) and <i>Oscillatoria</i> (Cyanophyceae). Phycologia 15(1):25-36.
00023548	Ciba-Geigy Corporation (1977) Atrazine: Chemical Data Section. (Unpublished study received Jun 2, 1977 under 100-529; CDL: 230302-A)

00023963	Burkhard, N. (1976) Project Report 17/76: Hydrolysis of 2-Chloro- and 2- Methylthio-4,6-bis-(alkylamino)-s-triazines under Laboratory Conditions. (Unpublished study received Apr 27, 1977 under 100-588; prepared by Ciba- Geigy, Ltd., submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL:229641-A)
00024328	Burkhard, N. and J. A. Guth. 1976. Photodegradation of atrazine, atraton and ametryne in aqueous solution with acetone as a photosensitizer. Pesticide Science 7(1):65-71. (Also In: Unpublished submission received July 19, 1978 under 201-403; submitted by Shell Chemical Co., Washington, D.C.; CDL:234469-C).
00024377	Macek, K. J., K. S. Buxton, S. Sauter, S. Gnilka and J. W. Dean. 1976. Chronic toxicity of atrazine to selected aquatic invertebrates and fishes. Prepared by EG & G Bionomics, Inc., Duluth, MN; submitted by Shell Chemical Co., Washington, D.C.
00024377	Macek, K. J., K. S. Buxton, S. Sauter, S. Gnilka and J. W. Dean. 1976. Chronic toxicity of atrazine to selected aquatic invertebrates and fishes. US. EPA, Off. Res. Dev., Environ. Res. Lab. Duluth, MN. EPA-600/3-76-047. 49 p.
00024395	Union Carbide Corp. 1975. Acute toxicity of SD 12011, Code 4-1-2-1 and Code 4-1-3-1 to fiddler crabs, <i>Uca pugilator</i> . Prepared by Union Carbide Corp.; submitted by Shell Chemical Co., Washington, D. C.
00024475	Forsythe, J.R.; King, E. (1967) Residue Report: Winter Wheat: AG-A No. 1608. (Unpublished study received Dec 29, 1967 under 7F0620; submitted by Geigy Chemical Co., Ardsley, N.Y.; CDL:090810-B)
00024480	Solga, J.; Mattson, A. (1967) The Determination of 2-Chloro-4-amino-6-isopropylamino-s-triazine (I) and 2-Chloro-4-amino-6- ethylamino-s-triazine (II). (Unpublished study received Dec 29, 1967 under 7F0620; submitted by Geigy Chemical Co., Ardsley, N.Y.; CDL:090810-G)
00024482	Mattson, A.M.; Kahrs, R.A. (1967) Efficiency of Various Extraction Procedures in Removing Residual Atrazine from Field-Treated Sorghum. (Unpublished study received Dec 29, 1967 under 7F0620; submitted by Ciba-Geigy Chemical Co., Ardsley, N.Y.; CDL:090810-I)
00024487	Lee, W.O.; Torrell, P.J.; Freeman, E.; et al. (1967) [Residues of Atrazine in Grasses]: AG-A No. 244. (Unpublished study including AG-A nos. 280, 463, 1038, received Dec 29, 1967 under 7F0620; prepared in cooperation with Oregon State Univ., Farm Crops Dept. and others, submitted by Geigy Chemical Co., Ardsley, N.Y.; CDL:090810-Q)
00024706	Sachsse, K.; Bathe, R. (1975) Acute Oral LD450 [^] of Technical Atrazine (G 30027) in the Rat: Project No. Siss 4569. (Unpublished study received Jun 2,

	1977 under 100-529; prepared by Ciba-Geigy, Ltd., submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL:230303-E)
00024708	Sachsse, K.; Bathe, R. (1976) Acute Dermal LDI50 [^] in the Rat of Technical G 30027: Project No. Siss 5663. (Unpublished study received Jun 2, 1977 under 100-529; prepared by Ciba-Geigy, Ltd., submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL: 230303-G)
00024709	Sachsse, K.; Ullmann, L. (1976) Eye Irritation in the Rabbit of G 30027: Project No. Siss 5663. (Unpublished study received Jun 2, 1977 under 100-529; prepared by Ciba-Geigy, Ltd., submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL:230303-H)
00024710	Sachsse, K.; Ullmann, L. (1976) Skin Irritation in the Rabbit after Single Application of G 30027: Project No. Siss 5663. (Unpublished study received Jun 2, 1977 under 100-529; prepared by Ciba-Geigy, Ltd., submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL:230303-I)
00024716	Beliles, R. P. and W. J. Scott, Jr. 1965. Atrazine safety evaluation on fish and wildlife Bobwhite quail, mallard ducks, rainbow trout, sunfish, goldfish): Atrazine: Acute toxicity in rainbow trout. Prepared by Woodard Res. Corp.; submitted by Ciba-Geigy Corp., Greensboro, NC.
00024717	Beliles, R. P. and W. J. Scott, Jr. 1965. Atrazine safety evaluation on fish and wildlife (Bobwhite quail, mallard ducks, rainbow trout, sunfish, goldfish): Atrazine: Acute toxicity in sunfish. Prepared by Woodard Res. Corp.; submitted by Ciba-Geigy Corp., Greensboro, NC.
00024718	Beliles, R. P. and W. J. Scott, Jr. 1965. Atrazine safety evaluation on fish and wildlife (Bobwhite quail, mallard ducks, rainbow trout, sunfish, goldfish): Atrazine: Acute toxicity in goldfish. Prepared by Woodard Res. Corp.; submitted by Ciba-Geigy Corp., Greensboro, NC.
00024719	Bentley, R. E. and K. J. Macek. 1973. Acute toxicity of atrazine to mud crab (<i>Neopanope texana</i>). Prepared by Bionomics, Inc.; Submitted by Ciba-Geigy Corp., Greensboro, NC.
00024721	Fink, R. 1976. Final report: Acute oral LD_{50} – Bobwhite quail. Project No. 108- 123. Prepared by Wildlife International, Ltd., Easton, MD; submitted by Ciba- Geigy Corp., Greensboro, NC.
00024722	Sachsse, K. and L. Ullmann. 1974. Acute oral LD_{50} of technical atrazin (G 30027) in the Japanese quail. Project No. Siss 4407. Prepared by Ciba-Geigy, Ltd., Basle, Switzerland; submitted by Ciba-Geigy Corp., Greensboro, NC.
00024723	Sachsse, K. and L. Ullmann. 1975. 8-Day feeding toxicity of technical G30027 (Atrazine) in the Japanese quail. Prepared by Ciba-Geigy, Ltd., Basle, Switzerland; submitted by Ciba-Geigy Corp., Greensboro, NC.
----------	--
00024786	Humphreys, T.E. (1960) Post-emergence Application of Simazine and Atrazine to Young Sugarcane Plants. (Unpublished study received Apr 6, 1961 under 100-439; prepared by Univ. of Florida, Agricultural Experiment Station, Dept. of Botany, submitted by CibaGeigy Corp., Greensboro, N.C.; CDL:027029-A)
00024799	Ooka, H. (1961) Atrazine ResiduesMacadamia Nuts. (Unpublished study including AG-A 96, received Aug 14, 1962 under 100-439; prepared in cooperation with Royal Hawaiian Macadamia Nut Co., submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL:000246-B)
00026977	Mattson, A.M.; Solga, J. (1963) Residues in Body Tissues of Sheep and Cattle Receiving Simazine in Their Diet as Compared with Residues of Propazine and Atrazine in Animals Similarly Treated. (Unpublished study received Nov 19, 1963 under unknown admin. no.; submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL: 119489-A)
00027097	Consultox Laboratories, Limited (1974) Atrazine: Acute Oral and Dermal Toxicity Evaluation. (Unpublished study received April 22, 1976 under 33660-1; submitted by Industria Prodotti Chemici, S.p.a., Novate Milanese, Italy; CDL:225976-A)
00027134	Talbert, R. E. and O. H. Fletchall. 1965. The adsorption of some s-triazines in soils. Weeds 13:46-52. (Also In: Unpublished submission received July 19, 1978 under 201-403; submitted by Shell Chemical Co., Washington, D.C.; CDL:234472-J).
00027204	Drake, C. H. 1976. Acute toxicity of technical NC 1659 (atrazine) to <i>Daphnia magna</i> . Lab. Rep. No. BIOSC/76/E/12. Prepared by Fisons, Ltd., submitted by Fisons Corp., Agricultural Chemicals Div., Bedford, MA.
00036935	Atkins, E. L., E. A. Greywood and R. L. MacDonald. 1975. Toxicity of pesticides and other agricultural chemicals to honey bees: Laboratory studies. Prepared by Univ. of Calif., Div. Agric. Ser., Leaflet 2287. 38 p.
00038294	Burnside, O.C.; Furrer, J.D.; McCarty, M.K.; et al. (1964) Chemi- cals That Control WeedsA Guide for 1964. :Univ. of Nebras- ka, Extension Service. (EC 64-130; Incomplete; also~In~unpub- lished submission received Nov 17, 1965 under 876-44; submitted by Velsicol Chemical Corp., Chicago, Ill.; CDL:021022- A)
00038297	Bohme, C.; Bar, F. (1975) Breakdown of Triazine Herbicides in the Animal

	Organism. A translation of: Uher den Abbau von Triazin- Herbiciden im Tierischen Organismus. (Unpublished study re- ceived on unknown date under 0F0996; prepared by Bundesgesund- heitsamt, Max von Pettenkofer-Institute, Laboratorium fur Ernahrungshygiene, submitted by Geigy Chemical Co., Ardsley, N.Y.; CDL:093306-A)
00040663	Obien, S. R. and Green, R. E. 1969. Degradation of atrazine in four Hawaiian soils. Weed Science 17(4):509-514. (Also~In: Unpublished submission received July 19, 1978 under 201-403; submitted by Shell Chemical Co., Washington, D.C.; CDL:234476-C)
00041408	Jessup, D. 1980. Two year oral chronic toxicity study in rats. International Research and Development Corp, Mattewan, MI. Report number 382-007.
00041409	Jessup, D. C. 1979. Three generation reproduction study in rats. International Research and Development Corp, Mattewan, MI. Report number 382-010.
00044017	Helling, C. S. 1971. Pesticide mobility in soils. II. Applications of soil thin-layer chromatography. Soil Science Society of America Proceedings 35:737-748. Also In: Unpublished submission received May 5, 1975 under 464-323; submitted by Dow Chemical U.S.A., Midland, Mich.; CDL:221997-S.
00055643	Interregional Research Project Number 4 (1979) (Efficacy of Atrazine on Guavas in Hawaii). (Compilation; unpublished study received Aug 18, 1980 under 0E2398; CDL:099550-A)
00055644	University of Hawaii (1965) Analytical Procedure for Atrazine in Guava. (Unpublished study received Aug 18, 1980 under 0E2398; prepared by Agricultural Biochemistry Dept., Pesticide Laboratory, submitted by Interregional Research Project No. 4, New Brunswick, N.J.; CDL:099550-B)
00055672	Ciba-Geigy Chemical Corporation (1971) Metabolism of s-Triazine Herbicides. (Unpublished study including letter dated Dec 29, 1971 from J.R. Forsythe to Harold G. Alford, received Dec 29, 1971 under 100-437; CDL:231915-A)
00058746	Heath, R. G., J. W. Spann, E. F. Hill and J. F. Kreitzer. 1972. Comparative dietary toxicities of pesticides to birds. Prepared by U.S. Dept. Interior, Bureau Sport Fish. Wildlife, Spec. Rep Wildlife. No., 152. 57 p.; submitted by Fisons Corp.
00059214	Beliles, R. P. and W. J. Scott, Jr. 1965. Atrazine safety evaluation on fish and wildlife (Bobwhite quail, mallard ducks, rainbow trout, sunfish, goldfish). Prepared by Woodard Res. Corp.; submitted by Geigy Chemical Co., Ardsley, NY.

00060642	Simmon, V.F.; Poole, D. (1977) Final Report:~In vitro~and~in vivo~ Microbiological Assays of Six Ciba-Geigy Chemicals: SRI Project LSC-5686. (Unpublished study received Dec 29, 1977 under 100- 542; prepared by Stanford Research Institute, submitted by Ciba- Geigy Corp., Greensboro, N.C.; CDL:232550-B)
00067425	Monsanto Company (1980) Residues of Glyphosate and Other Herbicides in Wheat following Chemical Fallow Applications of Roundup Tank Mix Combinations. Includes method dated Jul 1, 1979 and undated methods entitled: 2,4-D in wheat forage, straw and grain; Dicamba in wheat forage, straw and grain; Residues of alachlor in wheat grain, forage and straw; Atrazine in wheatforage, straw and grain; Cyanazine in wheat forage, straw.
00080629	Woodard, M.W.; Cockrell, K.O.; Woodard, G. (1963) Simazine, Atrazine, and Propazine: Tissue Residues and Safety Evaluation in Sheep and Beef Cattle Fed for Four Weeks. (Unpublished study received Mar 15, 1965 under 5F0447; prepared by Woodard ResearchCorp., submitted by Geigy Chemical Corp., New York, N.Y.; CDL:090488-D)
00093520	Mattson, A.; Solga, J.; Insler, M. (1966) The Determination of Hydroxy-simazine in Bermuda Grass and Hydroxy-atrazine in Corn Forage. (Unpublished study received Aug 1, 1966 under 7F0525; submitted by Geigy Agricultural Chemicals, Yonkers, N.Y.; CDL: 090628-A)
00093523	Geigy Agricultural Chemicals (1966) (Atrazine Residues on Corn and Sorghum). (Compilation; unpublished study, including AG-A 235, AG-A 830, AG-A 875, re5, 1961 under 100-439; submitted by AG-A 830, AG-A 875, received Aug 1, 1966 under 7F0525; CDL: 090628-F)
00093524	Geigy Agricultural Chemicals (1966) (Determination of Atrazine in Milk of Cows). (Compilation; unpublished study received Aug 1, 1966 under 7F0525; CDL:090628-G)
00094135	Gigger, R.P. (1959) Letter sent to R.E. Hamman dated Oct 14, 1959: Atrazine residues on corn. (Unpublished study received Nov 9, 1959 under 100-439; submitted by Ciba-Geigy Corp., Greensboro, N.C.; CDL:120788-A)
00098254	Hardies, D. E. and D. Y. Studer. 1982. Soil thin-layer chromatography of PPG-1292: BRC 22593. Unpublished study received April 5, 1982 under 2F2666; submitted by PPG Industries, Inc., Barberton, Ohio; CDL:070755-J.
00103153	Cassidy, J. (1972) A Rotational Metabolism Study of [delta]14C-Atrazine in Soil and Soybeans 52 to 72 Weeks after Herbicide Application to Soil: M2-01-3P, M2-01-45: Report No. GAAC-72137. (Unpublished study received Jun 10, 1982 under 100-631; submitted by Ciba-Geigy Corp., Greensboro, NC;

CDL:070914-L) 00105131 Burlingham, M.; Young, S.; Adamik, E. (1979) Comparative Skin Sensitization of Technical Atrazine: Project No. WIL-1214-78. (Unpublished study received May 12, 1982 under 201-411; prepared by WIL Research Laboratories, Inc., submitted by Shell Chemical Co., Washington, DC; CDL:247726-A) 00105942 Leake, C., D. Lines and K. Tiffen. 1981. The leaching of NC 21 314 in four soil types using soil TLC: METAB/81/40. Unpublished study received July1, 1982 under 45639-EX-7; prepared by FBC Ltd., England; submitted by FBC Chemicals, Inc., Wilmington, DE; CDL:070966-E. 00111690 Ciba-Geigy Corp. (1971) Igran 80W: Rotational Crop Residue Review. (Compilation; unpublished study received Nov 6, 1974 under 100-496; CDL:101175-A) Ciba-Geigy Corp. (1982) Atrazine--Sugarcane: Report No. ABR-82065. 00115588 (Compilation; unpublished study received Oct 12, 1982 under 100-439; CDL:071172-A) 00116620 Froelich, L., T. Bixler, C. Peake et al. 1982. Soil adsorption/desorption characteristics of FMC 57020: M-4861. Unpublished study received Oct 1, 1982 under 279-EX-93; submitted by FMC Corp., Philadelphia, PA; CDL:248476-D. 00126712 Ciba-Geigy Corp. (1983) Residues of Atrazine and Its Three Chlorometabolites in Forage and Hay Resulting from Spring Application of Atrazine to Pasture Grasses. (Compilation; unpublished study received Apr 8, 1983 under 100-439; CDL:071516-A) 00142160 Ciba-Geigy Corp. (1984) [Product Chemistry of Technical Atrazine]. Unpublished compilation. 108 p. 00143006 Arthur, A. (1984) Segment II Teratology Study in Rabbits: Toxicology/Pathology Report No. 68-84. Unpublished study prepared by Ciba-Geigy Corp. 220 p. Infurna, R. (1984) A Teratology Study of Atrazine Technical in Charles River 00143008 Rats: Toxicology/Pathology Report No. 60-84. Unpublished study prepared by Ciba-Geigy Corp. 269 p. 00143265 Tai, C. N., Breckenridge, C., and Green, J. D. 1985a. Simazine technical: Subacute oral 13 week toxicity study in rats. Ciba-Geigy Corporation, Division of Toxicology/Pathology, Summit, NJ. Study number 85018. 00147125 Buccafusco, R. 1976. Acute toxicity of Atrazina technical to bluegill (Lepomis macrochirus). Prepared by EG & G Bionomics, Wareham, MA; submitted by unknown.

00149428	Wright, A. (19??) The Breakdown of Carbon-14 -DW 3418 Herbicide Part II: Residues in Maize and Soils following Soil Application of Carbon-14 -DW 3418, Atrazine or Simazine: Group Research Report No. WKGR.0104.68. Unpublished study prepared by Wood stock Agricultural Research Centre, Shell Research Limited.14 p.
00150623	Puri, E. 1984. Autoradiographic DNA repair test on rat hepatocytes. Ciba-Geigy. Basle, Switzerland. Study No. 831371. May 16, 1984.
00158646	Orr, G.R., and Simoneaux, B.J. 1986. Disposition of simazine in the rat. Biochemistry Department. Agricultural Division. Ciba-Geigy Corporation, Greensboro NC. Report No: ABR-86032. April 30, 1986. FIFRA CBI.
00158745	Hollister, T. A. 1973. Differential responses of marine phytoplankton to herbicides: Oxygen Evolution, Bull. Environ. Contam. Toxicol. 9(5):291-295.
00158930	Mayhew, D.A., Taylor, G.D., Smith, S.H. and Banas, D.A. 1986. Twenty-four month combined chronic oral toxicity and oncogencity study in rats utilizing atrazine technical. American Biogenics Corp., Decatur, IL. Lab Study No.: 410-1102. Accession no. 262714-262727.
00161790	Puri, E. (1984) Autoradiographic DNA Repair Test on Rat Hepatocytes: Test No. 831171. Unpublished study prepared by Ciba- Geigy Ltd. 12 p.
00161854	Ciba-Geigy Corp. (1986) AtrazineCorn: Reports of Investigations Made with Respect to the Residue Chemistry of Atrazine Containing Products: Plant Metabot charcoal. Journal of Economic Products: Plant Metabolism, Animal Metabolism and Residue Data. Unpublished compilation. 1813 p.
00164821	Parshley, T. (1986) Letter sent to R. Taylor dated Oct 23, 1986: Additional product chemistry data requested in agency letter of Oct. 9, 1986 - Atrazine registration standard; Atrazine tech- nical. Prepared by Ciba-Geigy Corp. 86 p.
00164822	Ciba-Geigy Corp. (1986) [Atrazine Product Chemistry Including Octanol/Water Partition Coefficient Study]. Unpublished compilation. 149 p.
00257694	Simoneaux, B., and Sy, A. 1971. Metabolism of simazine and its metabolites in female rats. Geigy Agricultural Chemicals Division. Ciba-Geigy Corporation. Ardsley NY. Report No: GAAC-71030. May 31, 1971. FIFRA-CBI.
40098001	Mayer, F. L., Jr. 1987. Acute toxicity handbook of chemicals to estuarine orgnisms. US. EPA, Off. Res. Dev., Environ. Res. Lab., Gulf Breeze, FL. EPA 600/8-87/017. 274 p.
40098001	Mayer, F. L., Jr. and M. R. Ellersieck. 1986. Manual of acute toxicity:

	Interpretation and data base for 410 chemicals and 66 species of freshwater animals. USDI, Fish & Wildl, Serv., Resource publ. 160. 506 p.
40228401	Mayer, F. L., Jr. 1986. Acute toxicity handbook of chemicals to estuarine organisms. U.S. Environmental Protection Agency, EPA/600/X-86/231. 274 pages.
40245511	Tobia, A. 1987. Combined Chronic Toxicity/Oncogenicity Study with INL-5300: Long-term Feeding Study in Rats. Haskel Laboratory, Report No. 61-87: [includes supplementary Report, prepared by F. O'Neal].
40245516	Hardesty, P.T. 1987. Fate of radiolabeled DPX-L5300 in rats. Agricultural Products Dept. E.I. du Pont de Nemours and Co., Inc. Wilmingrton DE 19898. Haskell Laboratorty report No. 31-87. April 15, 1987.
40246601	Deparade, E. (1986) Atrazine: Salmonella/MammalianMicrosome Mutagenicity Test: Laboratory Study No. 861172. Unpublished study prepared by Ciba-Geigy Ltd. 23 p.
40389109	McKay, J. (1987) Sutan + (Butylate) 6.7-E Field Accumulation on Rotational Crops, Mississippi: Laboratory Project ID: RRC 87-86. Unpublished study prepared by Stauffer Chemical Co., Richmond Research Center. 124 p.
40389110	McKay, J. (1987) Sutan + (Butylate) 6.7-E Field Accumulation on Rotational Crops, Iowa: Laboratory Project ID: RRC 87-102. Unpublished study prepared by Stauffer Chemical Co., Richmond Research Center. 61 p.
40431301	O'Connor, D.; McCormick, G.; Green, J. (1987) Chronic Toxicity Study in Dogs: Atrazine Technical: Laboratory Study No. 852008. Unpublished study prepared by Ciba-Geigy Corp. 1405 p.
40431302	Hazelette, J.; Green, J. (1987) Oncogenicity Study in Mice: Atrazine Technical: Laboratory Study No. 842120. Unpublished study prepared by Ciba-Geigy Corp. 3160 p.
40431303	Mainiero, J.; Youreneff, M.; Giknis, M.; <i>et al.</i> (1987) Two-generation Reproduction Study in Rats: Atrazine Technical: Laboratory Study No. 852063. Unpublished study prepared by Ciba-Geigy Corp. 1395 p.
40431304	Orr, G. (1987) Disposition of Atrazine in Rat: (General Metabolism): Atrazine: Laboratory Study No.: ABR-87048. Unpublished study prepared by Ciba-Geigy Corp. 62 p
40431305	Thede, B. (1987) Study of Carbon 14σ-Atrazine Dose/Response Relationship in the Rat: (General Metabolism): Laboratory Study No. ABR-87087. Unpublished

	study prepared by Ciba-Geigy Corp. 53p.
40431306	Miles, B. (1987) Characterization and Identification of Atrazine Metabolites from Rat Urine: (General Metabolism): Laboratory Study No.: ABR-87115. Unpublished study prepared by Ciba-Geigy Corp. 35 p.
40431319	Spare, W. 1986. Determination of the hydrolysis rate constants of atrazine: Laboratory Study. No. 1236. 33 p. Unpublished study prepared by Agrisearch Inc., Frederick, MD; submitted by Ciba-Geigy Corp., Greensboro, NC.
40431320	Spare, W. 1987. Photodegradation of atrazine on soil surfaces exposed to artificial and natural sunlight: Laboratory Study No.1237. 68 p. Unpublished study prepared by Agrisearch Inc., Frederick, MD; Submitted by Ciba-Geigy Corp., Greensboro, NC.
40431321	Rustum, A. 1987. Aerobic, aerobic/anaerobic, and sterile soil metabolism of carbon 14-atrazine: Laboratory Study No. 6015-185. 133 p. Unpublished study prepared by Hazleton Laboratories America, Inc., Madison, WI; submitted by Ciba-Geigy Corp., Greensboro, NC.
40431322	Klaine, S. 1987. Biotic and abiotic degradation of atrazine and three of its metabolites in a west Tennessee soil: Laboratory Study No. TX-431. 63 p. Unpublished study prepared by Memphis State University, Memphis, TN; submitted by Ciba-Geigy Corp., Greensboro, NC.
40431323	Spare, W. 1987. Anaerobic aquatic metabolism of atrazine: Laboratory Study No. 1231. 69 p. Unpublished study prepared by Agrisearch, Inc., Frederick, MD; submitted by Ciba-Geigy Corp., Greensboro, NC.
40431324	Yu, W. C. 1986. Determination of adsorption/desorption constants of atrazine: Laboratory Study No. 59-1A. 33 p. Unpublished study prepared by Cambridge Analytical Associates, Inc., Boston, MA; submitted by Ciba-Geigy Corp., Greensboro, NC.
40431325	Yu, W. C. 1986. Determination of adsorption/desorption constants of G-28279: Laboratory Study No. 59-6A. Unpublished study prepared by Cambridge Analytical Associates, Inc., Boston, MA; submitted by Ciba-Geigy Corp., Greensboro, NC.
40431326	Yu, W. C. 1986. Determination of adsorption/desorption constants of G-34048: Laboratory Study No. 59-7A. Unpublished study prepared by Cambridge Analytical Associates, Inc., Boston, MA; submitted by Ciba-Geigy Corp., Greensboro, NC.
40431327	Yu, W. C. 1986. Determination of adsorption/desorption constants of G-28273:

Laboratory Study No. 59-5A. Unpublished study prepared by Cambridge Analytical Associates, Inc., Boston, MA; submitted by Ciba-Geigy Corp., Greensboro, NC. 40431328 Yu, W. C. 1986. Determination of adsorption/desorption constants of G-30033: Laboratory Study No. 59-6A. Unpublished study prepared by Cambridge Analytical Associates, Inc., Boston, MA; submitted by Ciba-Geigy Corp., Greensboro, NC. 40431330 Saxena, A. M. 1987. Determination of the mobility of soil-aged ¹⁴C-atrazine residues by thin-layer chromatography: Laboratory Study No. HLA 6015-186. Unpublished study prepared by Hazleton, Laboratories America, Inc., Madison, WI; submitted by Ciba-Geigy Corp., Greensboro, NC. 40431336 White, S. 1987. Field dissipation study on Aatrex Nine-O for terrestrial uses on bareground, Ripon, California: Laboratory Study No. 1641-86-71-01-21E-23. 300 p. Unpublished study prepared by Minnesota Valley Testing Labs, Inc., New Elm, MN; Submitted by Ciba-Geigy Corp., Greensboro, NC. 40431337 White, S. 1987. Field dissipation study on Aatrex Nine-O for terrestrial uses on bareground, Hollandale, Minnesota: Laboratory Study No. 1641-86-71-01-21E-25. 356 p. Unpublished study prepared by Minnesota Valley Testing Labs, Inc., New Elm, MN; submitted by Ciba-Geigy Corp., Greensboro, NC. 40431338 White, S. 1987. Field dissipation study on Aatrex Nine-O for terrestrial uses on corn, Ripon, California: Laboratory Study No.1641-86-71-01-06B-22. 311 p. Unpublished study prepared by Minnesota Valley Testing Labs, Inc., New Elm, MN; submitted by Ciba-Geigy Corp., Greensboro, NC. 40431339 White, S. 1987. Field dissipation study on Aatrex Nine-O for terrestrial uses on corn, Hollandale, Minnesota: Laboratory Study No. 1641-86-71-01-06B-24. 372 p. Unpublished study prepared by Minnesota Valley Testing Labs, Inc., New Elm, MN; submitted by Ciba-Geigy Corp., Greensboro, NC. 40431340 Schofield, M. 1986. Combined field dissipation and aquatic non-target organism accumulation Studies on Aatrex Nine-O for forestry use at Oregon City, Oregon: Laboratory Study No. 32989. 135 p. Unpublished study prepared by Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO; submitted by Ciba-Geigy Corp., Greensboro, NC. 40431344 Forbis, A. 1986. Uptake, depuration, and bioconcentration and metabolite characterization of carbon 14-atrazine by bluegill sunfish (Lepomis *macrochirus*): Laboratory Study No. 34737. 107 p. Unpublished study prepared by Analytical Bio-Chemistry Laboratories, Inc.; submitted by Ciba-Geigy Corp.,

40431352	Greensboro, NC . Caballa, S. (1973) The in vitro Metabolism of Carbon 14 -Atrazine and Derivatives by Rat and Sheep Liver under Tissue Culture Conditions: (Nature of ResidueMetabolism): Laboratory Study No.: GAAC-73035. Unpublished study prepared by Ciba-Geigy Corp. 30p.
40431353	Simoneaux, B. (1987) Distribution and Characterization of Carbon 14 -Atrazine in a Goat: (Nature of ResidueMetabolism): Laboratory Study No.: ABR-86056. Unpublished study prepared by Ciba-Geigy Corp. 42 p.
40431354	Thede, B. (1987) Study of Solubilized Residues from Protease Treated Tissues of Carbon 14 -Atrazine Dosed Chickens and Goat: (Nature of ResidueMetabolism): Laboratory Study No.: ABR- 87105. Unpublished study prepared by Ciba-Geigy Corp. 44 p.
40431355	Farrier, D. (1987) Study of Protease Released Metabolites in Selected Tissues of Lactating Goats Dosed with Carbon 14 -Atrazine: (Nature of ResidueMetabolism): Laboratory Study No.: ABR-87109. Unpublished study prepared by Ciba-Geigy Corp. 130
40431356	Simoneaux, B. (1986) Distribution and Characterization of Carbon 14 -Atrazine in a Chicken: (Nature of ResidueMetabolism): Laboratory Study No.: ABR-86045. Unpublished study prepared by Ciba-Geigy Corp. 29 p.
40431357	Madrid, S. (1987) Metabolism of Carbon 14 -Atrazine in Laying Hens Dosed for Eight Consecutive Days at 50 ppm: (Nature of Residue-Metabolism): Laboratory Stlism): Laboratory Study No.: ABR- Metabolism): Laboratory Study No.: ABR-87099. Unpublished study prepared by Ciba-Geigy Corp. 84 p.
40431364	Bade, T. (1986) Determination of Atrazine, G-28279, G-30033 and G-28273 Residues in Milk (including Sour Milk) using a Strong Cation Exchange Column Isolation and Cleanup: (Residue Analytical Method): Laboratory Study No.: AG-496. Unpublished studyprepared by Ciba-Geigy Corp. 19 p.
40431365	Bade, T. (1987) Determination of Atrazine, G-30033, G-28279 and G-28273 Residues in Forage, Fodder, Grain and Grain Fractions from Grain Crops Using Capillary Gas Chromatography: (Residue Analytical Method): Laboratory Study No.: AG-484. Unpublished study prepared by Ciba-Geigy Corp. 50 p.
40431369	Bade, T. (1985) Determination of Atrazine, G-28279, G-30033 and G-28273 Residues in Milk: (Residue Analytical Method): Laboratory Study No.: AG-463. Unpublished study prepared by Ciba-Geigy Corp. 19 p.
40431370	Bade, T. (1985) Determination of Atrazine, G-28279, G-30033 and G-28273 Residues in Beef Tissues (Blood, Muscle, Liver, Kidney, Fat): (Residue

Analytical Method): Laboratory Study No.: AG-476. Unpublished study prepared by Ciba-Geigy Corp. 60 p. Bade, T. (1987) Residues of Atrazine and Its Chlorometabolites in Grain 40431383 Sorghum (Forage, Fodder, Grain and Grain Fractions) following Application of Aatritions (Storage Stability): Study No. lowing Application of Aatrex 4L, 80W or Nine-O Herbicide: (Magnitude of Residues): Laboratory Study No.: ABR-87056. Unpublished study prepared by Ciba-Geigy Corp. 368 p. 40431401 Bade, T. (1987) Residues of Atrazine and Its Chlorometabolites in Corn (Forage, Fodder, Grain and Grain Fractions) following Application of Aatrex 4L, 80W or Nine-O Herbicide (Magnitude of Residues): Study No. ABR-87057. Unpublished compilation prepared by Ciba-Geigy Corp. 947 p. 40431418 Bade, T. (1987) Residues of Atrazine and Its Chlorometabolites in Macadamia Nutmeat following Application of Aatrex Herbicide (Magnitude of Residues): Study No. ABR-87096. Unpublished compilation prepared by Ciba-Geigy Corp. 54 p. 40431420 Bade, T. (1987) Residue of Atrazine and its Chlorometabolites in Wheat and Wheat Fractions Following Application of Aatrex Herbicide (Magnitude of Residues): Study No. ABR-87107. Unpublished study prepared in cooperation with Ciba-Geigy Corp and En-Cas A Analytical Laboratories. 130 p. 40431421 Cheung, M. (1987) Residue Stability Study of Atrazine and Chlorometabolites in Sweet Corn, Field Corn and Field Corn Fractions under Freezer Storage Cond No.: AG-175. Unpublished study pre- under Freezer Storage Conditions (Storage Stability): Study No. ABR-87095. Unpublished compilation prepared by Ciba-Geigy Corp. 76 p. 40431422 Bade, T. (1987) Residues of Atrazine and its Chlorometabolites in Poultry Tissues and Eggs from Laying Hens Following Administration of Atrazine (Magnitude of Residues): Study No. ABR-87059. Unpublished compilation prepared in cooperation with Ciba-Geigy Corp. and En-Cas Analytical Laboratories. 109 p. 40431423 Bade, T. (1987) Magnitude of Residues of Atrazine and its Chlorometabolites in Poultry Tissues and Eggs from Laying Hens Fed Atrazine in their Diet (Ma4L, 80W or Nine-O Herbicide (Magnitude Atrazine in their Diet (Magnitude of Residues): Study No. ABR- 87102. Unpublished compilation prepared by Ciba-Geigy Corp. 34 p. 40431424 Bade, T. (1987) Residues of Atrazine and its Chlorometabolites in Dairy Tissues and Milk Following Administration of Atrazine (Magnitude Of Residues): Study No. ABR-87060. Unpublished compilation prepared by Ciba-Geigy Corp. 169 p.

40431425	Bade, T. (1987) Magnitude of Residues of Atrazine and its Chlorometabolites in Meat and Milk of Beef and Dairy Cattle Fed Atrazine in Their Diet [ABR-87101, ABR-82065] (Magnitude of Residues): Study No. ABR-87101. Unpublished compilation prepared by Ciba-Geigy Corp. 43 p.
40431426	Cheung, M. (1987) Residue Stability Study of Atrazine, Simazine and Chlorometabolites in Dairy and Poultry Tissues, Milk and Eggs under Freezer Storage Conditions (Storage Stability): Study No. ABR-87094. Unpublished compilation prepared by Ciba-Geigy Corp. 105 p.
40437501	Orr, G. (1987) A Summary of the Disposition, Kinetics and Metabolism of Atrazine in the Rat (General Metabolism): Laboratory/Study No. ABR-87116. Unpublished study prepared by Ciba-Geigy Corp. 44 p.
40437502	Sumner, D. (1972) Characterization of the Atrazine Residues Present in the Liver of CowsA Progress Report (Nature of Residue-Metabolism): Laboratory/Study No. ABR-72030R. Unpublished study prepared by Ciba-Geigy Corp. 20 p.
40566301	Arthur, A. (1984) A Supplement to a Teratology Study of Atrazine Technical in New Zealand White Rabbits. Unpublished study prepared by Ciba-Geigy Corporation. 4 p.
40566302	Infurna, R. (1984) A Supplement to a Teratology Study of Atrazine Technical in Charles River Rats. Unpublished study prepared by Ciba-Geigy Corporation. 6 p.
40566501	Brown, R.; Lail, L. (1988) Technical Atrazine: Product Chemistry: Laboratory Project ID PC-87-023. Unpublished study prepared by Ciba-Geigy Corporation. 267 p.
40614405	McCormick, C.C., Arthur, A.T., and Green, J.D. 1988. Simazine-technical: 104 week oral chronic toxicity and carcinogenicity study in rats. Pharmaceutical Div., Ciba-Geigy. Laboratory report number: 2-011-09.
40629302	Hardisty, J. (1987) Supplement to Two-year Chronic Feeding/Oncogenicity Study in Rats Administered Atrazine: 410-1102. Unpublished study prepared by Experimental Pathology Laboratories, Inc. 316 p.
40629303	Rustum, A. 1988. Aerobic, aerobic/anaerobic, and sterile soil metabolism of ¹⁴ C-atrazine: Study No. HLA 6015-185. 165 p. Unpublished study prepared by Hazleton Laboratories America, Inc., Madison, WI; submitted by Ciba-Geigy Corp., Greensboro, NC.
40722301	Ceresa, C. (1988) Atrazine: Structural Chromosomal Aberration Test

	Micronucleus Test, Mouse: Study No. 871546. Unpublished study prepared by Ciba-Geigy Corp. 29 p.
40722302	Deparade, E. (1987) Diaminochlorotriazine: Gene Mutations Test: Salmonella/ Mammalian Mutagenicity Test: Study No. 871372. Unpublished study prepared by Ciba-Geigy Corp. 26 p.
40722303	Meyer, A. (1987) Diaminochlorotriazine: Tests for Other Genetoxic Effects: Autoradiographic DNA Repair Test on Human Fibroblasts: Study No. 871371. Unpublished study prepared by Ciba-Geigy Corp. 81 p.
40722304	Deparade, E. (1988) Hydroxyatrazine: Gene Mutations Test: Salmonella/ Mammalian-Microsome Mutagenicity Test: Study No. 871376. Unpublished study prepared by Ciba-Geigy Corp. 27 p.
40722305	Hertner, T. (1988). Tests for other genotoxic effects - auto-radiographic DNA repair test on rat hepatocytes. Ciba-Geigy, Basle, Switzerland. Laboratory report number: 871374. January 22, 1988. Unpublished.
40888101	Meyer, A. (1988) Hydroxyatrazine: Tests for other genotoxic effects, autoradiographic DNA repair tests on human fibroblasts. Ciba-Geigy, Basle, Switzerland . Study No. 871375. January 11, 1988. Unpublished.
41065201	Giknis, M. (1989) A Teratology (Segment II) Study in Rats: Atrazine Technical: Laboratory Study No. 882049. Unpublished study prepared by Ciba-Geigy Corp. 357 p
41065202	Giknis, M. (1989) A Teratology (Segment II) Study in Rats: Hydroxyatrazine Technical: Laboratory Study No. 872202. Unpublished study prepared by Ciba- Geigy Corp. 362 p.
41065203	Hughes, J. R. 1986. The toxicity of atrazine, Lot No. FL-850612 to four species of aquatic plants. Lab. Study No. 267-28-1100. Prepared by Malcolm Pirnie, Inc., White Plains, NY.; submitted by Ciba-Geigy Corporation, Greensboro, NC.
41065204	Parrish, R. 1978. Effects of atrazine on two freshwater and five marine algae. Lab. Study No. H82-500. Prepared by E G & G Bionomics, Marine Research Laboratory, Pensacola, FL.; submitted by Ciba-Geigy Corporation, Greensboro, NC.
41065205	Balu, K. 1989. Atrazine: Summary of surface water monitoring data for atrazine. Laboratory Study No. EIR-89001. 484 p. Unpublished study prepared and submitted by Ciba-Geigy Corp., Greensboro, NC.
41209801	Simoneaux, B. (1989) Nature of Atrazine Residues in Plants: Project ID

	ABR-89060. Unpublished study prepared by Ciba-Geigy Corp. 170 p.
41209802	Thede, B. (1989) Nature of Atrazine Residues in Animals: An Overview: Project ID ABR-89053. Unpublished study prepared by Ciba-Geigy Corp. 46 p.
41209803	Simoneaux, B. (1989) Atrazine - Nature of the Residue: Characterization of Metabolites Present in Feces of an Atrazine Dosed Goat: Project ID ABR-89026. Unpublished study prepared by Ciba-Geigy Corp. 70 p.
41209804	Simoneaux, B. (1989) Atrazine - Nature of the Residue: Further Characterization of Metabolites Present in Urine and Tissues of an Atrazine Dosed Goat: Project ID ABR-89027. Unpublished study prepared by Ciba-Geigy Corp. 121 p.
41209805	Ballantine, L. (1989) Estimated Dietary Exposure of Hydroxyatrazine Metabolites to Man: Atrazine: Project ID ABE-89067. Unpublished study prepared by Ciba-Gei study prepared by Ciba-Geigy Corp. 18 p.
41209806	Capps, T. (1989) Atrazine: Nature of Plant Metabolites in Animals (Animal Metabolism): Project ID ABR-89065. Unpublished study prepared by Ciba-Geigy Corp. 96 p.
41209807	Emrani, J. (1989) Fate of Corn Biosynthesized Metabolites of [Delta-Carbon 14]-Atrazine in Chickens: Project ID ABr-89006. Unpublished study prepared by Ciba-Geigy Corp. 42 p.
41209808	Simoneaux, B. (1989) Fate of Biosynthesized [Carbon 14]-Atrazine Metabolites in Lactating Goats: Project ID ABR-89054. Unpublished study prepared by Cibagy Corp. 18 p. hed study prepared by Ciba-Geigy Corp. 53 p.
41223001	Chetram, R. S. 1989. Atrazine: Tier 2 seed germination nontarget phytotoxicity test. Lab, Study No. LR 89-07B. Prepared by Pan-Agricultural Laboratories, Inc., Madera, CA.; submitted by Ciba-Geigy Corporation, Greensboro, NC.
41223003	Chetram, R. S. 1989. Atrazine: Tier 2 vegetative vigor nontarget phytotoxicity test, Lab, Study No. LR 89-07A. Prepared by Pan-Agricultural Laboratories, Inc., Madera, CA.; submitted by Ciba-Geigy Corporation, Greensboro, NC.
41257901	Spare, W. 1989. Adsorption/desorption of ¹⁴ C-atrazine: Agrisearch Project No. 12174. 59 p. Unpublished study prepared by Agrisearch, Inc., Frederick, MD; submitted by Ciba-Geigy Corp., Greensboro, NC.
41257902	Spare, W. 1989. Adsorption/desorption of ¹⁴ C-G-34048: Agrisearch Project No. 12171. 57 p. Unpublished study prepared by Agrisearch, Inc., Frederick, MD; submitted by Ciba-Geigy Corp., Greensboro, NC.

41257904	Spare, W. 1989. Adsorption/desorption of ¹⁴ C-G-28273: Agrisearch Project No. 12173. 55 p. Unpublished study prepared by Agrisearch Inc., Frederick, MD; submitted by Ciba-Geigy Corp., Greensboro, NC.
41257905	Spare, W. 1989. Adsorption/desorption of ¹⁴ C-G-28279: Agrisearch Project No. 12170. 57 p. Unpublished study prepared by Agrisearch, Inc., Frederick, MD; submitted by Ciba-Geigy Corp., Greensboro, NC.
41257906	Spare, W. 1989. Adsorption/desorption of ¹⁴ C-G-30033: Agrisearch Project No. 12169. 57 p. Unpublished study prepared by Agrisearch Inc., Frederick, MD; submitted by Ciba-Geigy Corp., Greensboro, NC.
41258601	Cheung, M. (1989) Simazine, Atrazine, and Chlorometabolites: Residue Stability Study of Simazine, Atrazine, and Chlorometabolites in Sweet Corn, Field Corn, and Field Corn Fractions under Freezer Storage Conditions: Final Report: Laboratory Project IDABR-89032. Unpublished study prepared by Ciba-Geigy Corp.83 p.
41258602	Cheung, M. (1989) Simazine, Atrazine, and Chlorometabolites: Residue Stability Study of Simazine, Atrazine, and Chlorometabolites in Apples and Apple Fraigy Corp. 53 p. lites in Apples and Apple Fractions under Freezer Storage Conditions: Final Report: Laboratory Project ID ABR-89033. Unpublished study prepared by Ciba-Geigy Corp. 73 p.
41258603	Cheung, M. (1989) Simazine, Atrazine, and Chlorometabolites: Residue Stability Study of Simazine, Atrazine, and Chlorometabolites in Dairy and Poultry Tissues, Milk, and Eggs under Freezer Storage Conditions: Final Report: Laboratory Project ID ABR- 89031. Unpublished study prepared by Ciba-Geigy Corp. 107 p.
41293501	Rudzki, M.; McCormick, G.; Arthur, A. (1989) 90-Day Oral Toxicity Study in Rats: Hydroxyatrazine: Lab Study Number 882146; MIN 882146; 89015. Unpublished study prepared by Ciba-Geigy Corp., Research Dept., Pharmaceuticals Div. 408 p.
41392401	Thompson, S.; Batastini, G.; Arthur, A. (1990) 13/52-Week Oral Toxicity Study in Dogs: Lab Project Number: 872151. Unpublished study prepared by Ciba- Geigy Corp. 784 p.
41392402	Hummel, H.; Youreneff, M.; Giknis; et al. (1989) Diaminochlorotriazine: A Teratology (Segment II) Study in Rats: Lab Project Number: 872177. Unpublished study prepared by Ciba-Geigy Corp. 428 p.
41397101	Ross, J. (1990) Atrazine - Sample Storage Stability Interval Sum- mary: Lab Project Number: ABR-89116. Unpublished study prepared by Ciba-Geigy Corp.

46 p.

- 41397102 Szorik, M. (1990) Ruggedness Testing of Atrazine Analytical Method AG-484 for the Determination of Atrazine and its Metabolites G-30033, G-28279, and G-2827ex 4L, 80W or Nine-O Herbicide: (Mag- 30033, G-28279, and G-28273 in Field Corn Forage, Field Corn Grain, and Sweet Corn (K + CWHR): Final Report: Lab Project Number: HLA 6012-298. Unpublished study prepared by Hazleton Laboratories America, Inc. 95 p.
- 41397103 Szorik, M. (1990) Ruggedness Testing of Atrazine Analytical Method AG-476 for the Determination of Atrazine and its Metabolites G-30033, G-28279, and G-28273 in Beef Muscle, Beef Fat, and Beef Blood: Final Report: Lab Project Number: HLA 6012-297. Unpublished study prepared by Hazleton Laboratories Americas, Inc. 76 p.
- 41423401 Williams, R. (1990) Multiresidue Method Testing of Atrazine, Simazine, and their Chloro-and Hydroxy-triazine Metabolites in Crops and Animal Tissues: Lab Project ID: ABR-89010. Unpublished prepared by Ciba Geigy Corp. 130 p.
- 41479401 Ceresa, C. (1988) Hydroxyatrazine: Structural Chromosomal Aberration Test: Lab Project Number: 871373. Unpublished study prepared by Ciba-Geigy, Ltd. 32 p.
- 42041401 Putt, Arthur E. 1991. Atrazine 80% WP: Acute toxicity to daphnids (*Daphnia magna*) underflow-through conditions. Lab. Study No. 91-5-3761. Prepared by Springborn Laboratories, Inc., Wareham, MA.; submitted by Ciba-Geigy Corporation.
- 42041402 Chetram, R. S. 1989. Atrazine: Tier 2 vegetative vigor nontarget phytotoxicity test, Lab, Study No. LR 89-07A. Prepared by Pan-Agricultural Laboratories, Inc., Madera, CA.; submitted by Ciba-Geigy Corporation, Greensboro, NC.
- 42041403 Chetram, R. S. 1989. Atrazine: Tier 2 seed emergence nontarget phytotoxicity test. Lab, Study No. LR 89-07C. Prepared by Pan-Agricultural Laboratories, Inc., Madera, CA.; submitted by Ciba-Geigy Corporation, Greensboro, NC.

42041404 Hoberg, J. R. 1991. Atrazine technical: Toxicity to the duckweed *Lemna gibba* G3. SLI Rep. No. 91-1-3613. Prepared by Springborn Laboratories, Inc., Wareham, MA.; submitted by Ciba-Geigy Corporation, Greensboro, NC.

42041405 Speth, Robert M. 1991. Responses to the EPA review of the atrazine forestry field dissipation study at Oregon City, Oregon. Supplement to MRID 40431340). Laboratory Project ID: ABR-91067. 45 p. Unpublished study prepared by Ciba-Geigy Corp., Greensboro, NC.; submitted by Ciba-Geigy Corp., Greensboro, NC.

42043501	Slaven, R. (1991) Atrazine Technical: Response to Agency's Letter of September 6, 1991: Atrazine Contamination with 2,3,7,8,-TCDF. Unpublished study prepared by Ciba-Geigy Corp. 41 p.
42060701	Hoberg, J. R. 1991. Atrazine technical: Toxicity to the freshwater green alga <i>Selenastrum capricornutum</i> . SLI Rep. No. 91-1-3600. Prepared by Springborn Laboratories, Inc., Wareham, MA.; submitted by Ciba-Geigy Corporation, Greensboro, NC.
42085001	Thakur, A. (1991) Determination of Hormone Levels in Sprague-Dawley Rats Treated with Atrazine Technical: Final Report: Lab Project Number: 483-278. Unpublished study prepared by Hazleton Washington, Inc. 1132 p.
42089901	Holbert, M. (1991) Acute Inhalation Toxicity Study in Rats: Atrazine Technical: Lab Project Number: 8079-91. Unpublished study prepared by Stillmeadow Inc. 23 p.
42089902	Huber, K. (1989) Atrazine Technical: 21-Day Dermal Toxicity Study in Rabbits: Lab Project Number: 882035. Unpublished study pre- pared by Ciba-Geigy. 330 p.
42089904	Schabacker, D. 1991. Summary report: Aqueous photolysis of carbon 14-atrazine under natural and artificial light. Lab. Project Number: 12112 A: 12112 B. 185 p. Unpublished study prepared by Agrisearch Inc., Frederick, MD; submitted by Ciba-Geigy Corp., Greensboro, NC.
42089905	Das, Y. 1989. Photodegradation of triazine(U)-carbon 14-atrazine on soil under artificial sunlight. Lab. Project Number: 89070. 109 p. Unpublished study prepared by Innovative Science Services, Inc.; submitted by Ciba-Geigy Corp., Greensboro, NC.
42089906	Nelson, D. and D. Schabacker. 1991. Summary report: Soil metabolism of carbon 14-atrazine and metabolite characterization/identification: Lab. Project Number: 6015-185: ABR-91073. 321 p. Unpublished study prepared by Hazleton Labs America, Inc.
42089909	Landis International, Inc. (1991) Supplement to Field Dissipation Study on Aatrex Nine-O for Terrestrial Uses on Corn in Ripon, California: Lab Project Number: 1641-86-71-01-06B-22. Unpubli- shed study. 124 p.
42089910	Landis International, Inc. (1991) Supplement to Field Dissipation Study on Aatrex Nine-O for Terrestrial Uses on Bareground in Ripon, California: Lab Project Number: 1641-86-71-01-21E-23. Unpublished study. 122 p.
42089911	Landis International, Inc. (1991) Supplement to Field Dissipation Study on

	Aatrex Nine-O for Terrestrial Uses on Corn in Hollan- dale, Minnesota: Lab Project Number: 1641-86-71-01-06B-24. Unpublished study. 134 p.
42089912	Landis International, Inc. (1991) Supplement to Field Dissipation Study on Aatrex Nine-O for Terrestrial Uses on Bareground in Hollandale, Minnesota: Lab Project Number: 1641-86-71-01-21E-25. Unpublished study. 134 p.
42146101	Thakur, A. (1991) Determination of Hormone Levels in Fischer-344 Rats Treated with Atrazine Technical: Final Report: Lab Project Number: 483-279. Unpublished study prepared by Hazleton Washington, Inc. 1534 p.
42165308	Balu, K. 1991. Responses to the EPA review of the field dissipation study on Aatrex Nine-0 for terrestrial uses on corn, Hollandale, Minnesota: Supplement to EPA MRID Number 40431339. Lab. Project Number: ABR-91066. 49 p. Unpublished study prepared and submitted by Ciba-Geigy Corp., Greensboro, NC
42165503	Thede, B. (1991) Response to Data Request in EPA Review of Atrazine Registration StandardToxicity Studies: Lab Project Number: ABR-91076. Unpublished study prepared by Ciba-Geigy Corp. 301 p.
42165504	Guy, S. 1987. Field dissipation on Aatrex Nine-0 for terrestrial uses on corn in Donalsonville, GA: Lab. Project Number: 1641-86-71-01-06B-26. 325 p. Unpublished study prepared by Landis International and Others; submitted by Ciba-Geigy Corp., Greensboro, NC.
42165505	 Guy, S. 1987. Field dissipation on Aatrex Nine-0 for terrestrial uses on bareground in Donalsonville, GA: Lab. Project Number: 1641-86-71-01-21E-27. 317 p. Unpublished study prepared by Landis International and Others; submitted by Ciba-Geigy Corp., Greensboro, NC.
42165506	Balu, K. 1991. Responses to the EPA review of the field dissipation study on Aatrex Nine-0 for terrestrial uses on bareground, Ripon, California: Supplement to EPA MRID Number 40431336. Lab. Project Number: ABR-91063. 110 p. Unpublished study prepared and submitted by Ciba-Geigy Corp., Greensboro, NC.
42165507	Balu, K. 1991. Responses to the EPA review of the field dissipation study on Aatrex Nine-0 for terrestrial uses on bareground, Hollandale, Minnesota: Supplement to EPA MRID Number 40431337. Lab. Project Number: ABR-91064. 50 p. Unpublished study prepared and submitted by Ciba-Geigy Corp., Greensboro, NC.
42165509	Balu, K. 1991. Responses to the EPA review of the field dissipation study on Aatrex Nine-0 for terrestrial uses on corn, Ripon, California: Lab. Project Number: ABR-91065. 111 p. Unpublished study prepared and submitted by

Ciba-Geigy Corp., Greensboro, NC.

- 42204401 Thakur, A. (1992) Oncogenicity Study in Sprague-Dawley Rats with Atrazine Technical: Lab Project Number: 483-275. Unpublished study prepared by Hazleton Washington, Inc. 1092 p.
- 42211401 Stumpf, K. (1992) Letter Sent to R. Taylor dated Feb 7, 1992: Modification of the Enseco analytical method for determination of 2,3,7,8-TCDF in Technical Atrazine|. Prepared by Ciba-Geigy Corp. 1287 p.
- 42227001 Thakur, A. (1992) Oncogenicity Study in Fischer 344 Rats with Atrazine Technical: Lab Project Number: 483-277. Unpublished study prepared by Hazleton Washington, Inc. 2999 p.
- 42547101 Pedersen, C. A. and D. R. DuCharme. 1992. Atrazine technical: Toxicity and reproduction study in mallard ducks. Lab. Proj. ID. No. BLAL No. 102-013-08. Prepared by Bio-Life Associates, Ltd., Neillsville, WI; submitted by Ciba-Geigy Corp., Greensboro, NC.
- 42547102 Pedersen, C. A. and D. R. DuCharme. 1992. Atrazine technical: Toxicity and reproduction study in bobwhite quail. Lab. Proj. ID. No. BLAL No. 102-012-07. Prepared by Bio-Life Associates, Ltd., Neillsville, WI; submitted by Ciba-Geigy Corp., Greensboro, NC.
- 42547103 Dionne, E. 1992. Atrazine technical Chronic toxicity to the fathead minnow (*Pimephales promelas*) during a full life-cycle exposure. SLI Report No. 92-7-4324. Prepared by Springborn Laboratories, Inc., Wareham, MA; submitted by Ciba-Geigy Corp., Greensboro, NC.
- 42547105 Hertner, T. (1992) Autoradiographic DNA Repair Test on Rat Hepatocytes Tests for Other Genotoxic Effects: Lab Project Number: 911246. Unpublished study prepared by Ciba-Geigy Limited. 98 p.
- 42547115 Simoneaux, B.; Wurz, R. (1992) Atrazine--Overview of the Nature and Magnitude of Potential Market Metabolites in Corn and Sorghum: Analysis of Field Samples Treated with (Carbon 14)-Atrazine or Aatrex Nine-O: Lab Project Number: ABR-92068. Unpublished study prepared by Ciba Geigy Corp. 31 p.
- 42547116 Larson, J. (1992) Carbon 14-Atrazine: Nature of the Residues in Corn and Sorghum: Lab Project Number: HWI 6117-178: 51-91. Unpublished study prepared by Hazleton Wisconsin, Inc. 249 p.
- 42547117 McLaughlin, R. (1992) Magnitude of the Residues in Corn Samples following Applications of Aatrex Nine-O [Atrazine]: Lab Project Number: ABR-92028. Unpublished study prepared by Ciba-Geigy Corp. 433 p.

- 42547118 Wurz, R. (1992) Validation of Analytical Method AG-596 by the Analysis of [carbon 14]-Atrazine Treated Corn and Sorghum Raw Agricultrual Commodities: Deasso or Lasso + Atrazine Agricultrual Commodities: Determination of the Radioactive Accountability of Hydroxy-and Chloro-metabolites of Atrazine in [carbon 14]-Atrazine Treated Crops by Analytical Methods AG-596 and AG-484 including Residue Data: Lab Project Number: ABR-92025. Unpublished study prepared by Ciba-Geigy Corp.
- 42547119 Wurz, R. (1992) Atrazine: Analytical Method for the Determination of G-34048 and GS-17794 in Crops by High Performance Liquid Chromatography with Column Switching: Lab Project Number: AG-596: ABR-91032. Unpublished study preparedby Ciba-Geigy Corp. 136 p.
- 42547120 Yokley, R. (1990) Determination of Atrazine, G-28279, G-30033, and G-28273 Residues in Fresh and Sour Milk using a Strong Cation Exchange Column Isolation and Cleanup: Lab Project Number: AG-496A. Unpublished study prepared by Ciba-Geigy Corp. 31 p.
- 42547121 Yarko, J. (1990) Independent Laboratory Confirmation of the Tolerance Enforcement Method (...) for the Determination of Atrazine, G-28279, G-30033, anrmination of the Radioactive Atrazine, G-28279, G-30033, and G-28273 Residues in Fresh and Sour Milk using a Strong Cation Exchange Column Isolation and Cleanup: Analytical Method AG-496A: Lab Project Number: 900204. Unpublished study prepared by Ciba-Geigy Corp. 246 p.
- 42547122 Yokley, R. (1992) Analytical Method for the Determination of Residues of Atrazine, G-28273, G-28279, and G-30033 in Poultry Tissues and Eggs by Gas Chromatography including Validation Data: Lab Project Number: AG-593. Unpublished study prepared by Ciba-Geigy Corp. 105 p.
- 42547123 Yarko, J. (1992) Independent Laboratory Confirmation of the Tolerance Enforcement Method (...) for the Determination of Residues of Atrazine, G-28273, G-28279, and G-30033 in Poultry Tissues and Eggs by Gas Chromatography Analytical Method AG-593: Lab Project Number: 920201. Unpublished study prepared by CYAL, Inc. 169 p.
- 42637003 Hertner, T. (1993) Atrazine Technical: Structural Chromosomal Aberration Test-Dominant Lethal Test, Mouse, 8 Weeks: Lab Project Number: 911247. Unpublished study prepared by Ciba-Geigy Ltd. 141 p.
- 42743902 Eldridge, J., Wetzel, L., Tisdel, M., and Luempert, L.G. 1993a. Determination of Hormone Levels in Sprague-Dawley Rats Treated with Atrazine Technical: Revised Supplement to Final Report. Hazleton Washington, Inc. Lab Project Number: 483-278.

42743903	Eldridge, J.; Wetzel, L.; Tisdel, M. <i>et al.</i> (1993) Determination of Hormone Levels in Fischer-344 Rats Treated with Atrazine Technical: Revised Supplement to Final Report: Lab Project Number: 483-279. Unpublished study prepared by Bowman Gray School of Medicine. 166 p.
42873701	Stubbs, D. (1993) Technical Atrazine: Product Chemistry: Lab Project Number: PC-93-009. Unpublished study prepared by Ciba Plant Protection. 214 p.
42925201	Jackson, W. (1993) Atrazine Technical: Product Chemistry. Final Report: Lab Project Number: PC-93-010: ASGSR-93-141: 232-93. Unpublished study prepared by Ciba-Geigy Corp. 289 p.
42925601	Tortora, N. (1993) Metabolism of (Triazine-(Carbon 14))-Hydroxy-Atrazine in Lactating Goats: Lab Project Number: G-34048: F-00123: ANPHI-91004. Unpublir 201-279; CDL:252506-A; G-34048: F-00123: ANPHI-91004. Unpublished study prepared by Ciba-Geigy Corp. 145 p.
43013201	Kuhn, J. (1991) G-28279 Technical: Acute Oral Toxicity Study in Rats: Lab Project Number: 7803/91. Unpublished study prepared by Stillmeadow, Inc. 27 p.
43013202	Kuhn, J. (1991) G-30033 Technical: Acute Oral Toxicity Study in Rats: Lab Project Number: 7802/91. Unpublished study prepared by Stillmeadow, Inc. 28 p.
43013203	Thompson, S.; Batastini, G.; Arthur, A. (1992) G-28279 Technical: 90-Day Oral Toxicity Study in Dogs: 13-Week Feeding Study in Dogs: Lab Project Number: 912021. Unpublished study prepared by Research Dept. Ciba-Geigy Corp. 429 p
43013205	Schneider, M. (1992) G-28279 Technical: 90-Day Oral Toxicity Study in Rats: 3- Month Oral Toxicity Study in Rats (Administration in Food): Lab Project Number: 901261. Unpublished study prepared by Ciba-Geigy Ltd. 263 p.
43013206	Gerspach, R. (1991) G-30033 Technical: 90-Day Oral Toxicity Study in Rats: 3- Month Oral Toxicity Study in Rats (Administration in Food): Lab Project Number: 901264. Unpublished study prepared by Ciba-Geigy Ltd. 254 p.
43013207	Pettersen, J.; Richter, A.; Gilles, P. (1991) Diaminochlorotriazine (G-28273): 90- Day Oral Toxicity Study in Rats: Lab Project Number: F-00006. Unpublished study prepared by Ciba-Geigy Corp. 450 p.
43013208	Marty, J. (1992) G-28273 Technical: Teratology Study in Rats: Developmental Toxicity (Teratogenicity) Study in Rats with G-28279 Technical (Oral Administration): Lab Project Number: 901262. Unpublished study prepared by Ciba-Geigy Ltd. 298 p.

43013209	Marty, J. (1992) G-30033 Technical: Teratology Study in Rats: Developmental Toxicity (Teratogenicity) Study in Rats with G-30033 Technical (Oral Administration): Lab Project Number: 901265. Unpublished study prepared by Ciba-Geigy Ltd. 296 p.
43016501	Stubbs, D. (1993) Technical Atrazine: Product Chemistry: Lab Project Number: PC/93/014. Unpublished study prepared by Ciba Plant Protection. 5 p.
43016502	Sova, J. (1993) Atrazine Technical: Response to the EPA Review of the Acute Inhalation Toxicity Study. Unpublished study prepared by Ciba Plant Protection. 5 p.
43016503	Larson, J. (1993) Carbon 14Atrazine: Nature of Residue in Sugarcane: Final Report Amendment No. 1: Lab Project Number: HWI/6117/181: 95/91. Unpublished study prepared by Hazleton Wisconsin, Inc. 307 p.
43016504	Wurz, R. (1993) Validation of Analytical Method AG-596 for the Determination of G-34048 and GS-17794 in Sugarcane and Wheat: Determination of the Radio-use activated carbon filters. Determination of the Radioactive Accountability of Hydroxy-and Chloro-metabolites of Atrazine in (carbon 14)-Atrazine Treated Crops by Analytical Methods AG-596 and AG-484, IncludingResidue Data: Lab Project Number: ABR/93053. Unpublished studyprepared by Ciba Plant Protection. 87 p.
43016505	Larson, J. (1993) Uptake and Metabolism of Atrazine in Field Rotational Crops Following Corn and Sorghum Treated at a Rate of 3.0 lb. AI/Acre: (carbon 14)-Atrazine: Lab Project Number: HWI/6117/183. Unpublished study prepared by Hazleton Wisconsin, Inc. 273 p.
43016506	Rosenheck, L.; Phillips, J.; Selman, F. (1993) Worker Mixer/Loader and Applicator Exposure to Atrazine: Lab Project Number: AE/91/511: 126/91. Unpublished study prepared by Pan-Agricultural Labs, Inc. 309 p.
43048501	Ciba-Geigy Corp. (1993) Atrazine: Supplement to Nature of Residue in Corn and Sorghum: Lab Project Number: HWI 6117-178: 51-91: PM-013. Unpublished study. 50 p.
43074801	Hoberg, J. R. 1993. Atrazine technical: Toxicity to the marine diatom, (<i>Skeletonema costatum</i>). SLI Rep. No. 93-4-4753. Prepared by Springborn Laboratories, Inc., Wareham, MA.; submitted by Ciba-Geigy Corporation, Greensboro, NC.
43074802	Hoberg, J. R. 1993. Atrazine technical: Toxicity to the freshwater green alga, (<i>Selenastrum capricornutum</i>). SLI Rep. No. 93-4-4751. Prepared by Springborn Laboratories, Inc., Wareham, MA.; submitted by Ciba-Geigy Corporation,

Greensboro, NC.

- 43074803 Hoberg, J. R. 1993. Atrazine technical: Toxicity to duckweed, (*Lemna gibba*). SLI Rep. No. 93-11-5053. Prepared by Springborn Laboratories, Inc., Wareham, MA.; submitted by Ciba-Geigy Corporation, Greensboro, NC.
- 43074804 Hoberg, J. R. 1993. Atrazine technical: Toxicity to duckweed, (*Lemna gibba*). SLI Rep. No. 93-4-4755. Prepared by Springborn Laboratories, Inc., Wareham, MA.; submitted by Ciba-Geigy Corporation, Greensboro, NC.
- 43093101 Deparade, E. (1990) Salmonella and Escherichia/Liver-Microsome Test: G-28279 Technical: Gene Mutations Test: Lab Project Number: 891243. Unpublished study prepared by Ciba-Geigy Limited. 39 p.
- 43093102 Deparade, E. (1989) Salmonella and Escherichia/Liver-Microsome Test: G-30033 Technical: Gene Mutations Test: Lab Project Number: 891236. Unpublished study prepared by Ciba-Geigy Limited. 37 p.
- 43093103 Ogorek, B. (1991) Structural Chromosomal Aberration Test: Micronucleus Test, Mouse: G-28279 Technical: Lab Project Number: 901307. Unpublished study prepared by Ciba-Geigy Limited. 37 p.
- 43093104 Ogorek, B. (1991) Structural Chromosomal Aberration Test: Micronucleus Test, Mouse: G-30033 Technical: Lab Project Number: 901309. Unpublished study prepared by Ciba-Geigy Limited. 40 p.
- 43093105 Geleick, D. (1991) Tests for Other Genotoxic Effects: Autoradiographic DNA Repair Test on Rat Hepatocytes: G-28279 Technical: Lab Project Number: 901308. Unpublished study prepared by Ciba-Geigy Limited. 94 p.
- 43093106 Geleick, D. (1991) Tests for Other Genotoxic Effects: Autoradiographic DNA Repair Test on Rat Hepatocytes: G-30033 Technical: Lab Project Number: 901310. Unpublished study prepared by Ciba-Geigy Limited. 94 p.
- 43160501 Selman, F. (1993) Magnitude of Residues in Field Corn and Rotational Indicator Crops Following an Application of AATREX 4L Plus Crop Oil Concentrate (COC): Lab Project Number: ABR-93046: 101175: 25-91-B2. Unpublished study prepared by Biochemistry Department, Ciba-Geigy Corp. 1062 p.
- 43160502 Ross, J. (1994) Atrazine--Magnitude of Residues in or on Wheat Following an Application of AATREX Nine-O to Wheat Stubble (Wheat-Fallow-Wheat): Lab Project Number: ABR-93045: 119-89-B1: 101171. Unpublished study prepared by Biochemistry Department, Ciba-Geigy Corp. 716 p.
- 43160503 Ross, J. (1994) Atrazine--Magnitude of the Residues in or on Grain Sorghum,

	Used for Processing, Following Post Application of AATREX Nine-O: Lab Project 1979 under 100-583; prepared in of AATREX Nine-O: Lab Project Number: ABR-93079: 58-89-A: 101170. Unpublished study prepared by Biochemistry Department, Ciba-Geigy Corp. 252 p.
43160504	Ross, J. (1994) AtrazineMagnitude of the Residues in or on Sugarcane and Processed Fractions Following Applications of AATREX Nine-O or AATREX 4L: Lab Project Number: ABR-93044: 101173: 25-89. Unpublished study prepared by Biochemistry Department, Ciba-Geigy Corp. 658 p.
43160505	Selman, F. (1994) AtrazineMagnitude of the Residues in Corn Samples Following Applications of AATREX Nine-O: Amendment No. 1 to Add Results of Processing of Corn Grain: Lab Project Number: ABR-92028: 101168: 57-89. Unpublished study prepared by Biochemistry Department, Ciba-Geigy Corp. 507 p.
43188901	Jackson, W. (1994) Atrazine Technical: Product Chemistry: Lab Project Number: PC-94-003. Unpublished study prepared by Ciba-Geigy Corp. 12 p.
43188902	Stubbs, D. (1994) Atrazine Technical: Product Chemistry: Lab Project Number: PC-94-003: MP94-001. Unpublished study prepared by Ciba-Geigy Corp. 15 p.
43314302	Chengelis, C. (1994) A Dermal Radiotracer Absorption Study in Rats with (carbon 14) Atrazine: Final Report: Lab Project Number: 82048: 89/90/B. Unpublished study prepared by WIL Research Laboratories, Inc. 510 p.
43337901	Stubbs, D. (1994) Technical Atrazine: Product Chemistry: Lab Project Number: PC/94/008. Unpublished study prepared by Ciba Plant Protection. 174 p.
43344901	Machado, M. W. 1994. Atrazine technical Acute toxicity to sheepshead minnow (<i>Cyprinodon variegatus</i>) under flow-through conditions. Prepared by Springborn Laboratories, Inc., Wareham, MA; submitted by Ciba-Geigy Corp., Greensboro, NC.
43344902	Machado, M. W. 1994. Atrazine technical Acute toxicity to mysid shrimp (<i>Mysidopsis bahia</i>) under flow-through conditions. Prepared by Springborn Laboratories, Inc., Wareham, MA; submitted by Ciba-Geigy Corp., Greensboro, NC.
43395501	Stubbs, D. (1994) Product Chemistry: Technical Atrazine: Lab Project Number: PC/94/015: PPD/228/93/F. Unpublished study prepared by Ciba-Geigy Corp. 23 p.
43395502	Wurz, R. (1992) Validation of Analytical Methods AG-571 and AG-572 for the

	Analysis of G-34048 and GS-17794 in Crops by High Performance Liquid Chromatography with Column Switching: Lab Project Number: ABR/91032: 101982. Unpublished study prepared by Ciba-Geigy Corp. 37 p.
43395503	Wurz, R. (1994) Stability of the Atrazine and Ametryn Metabolites G-34048 and GS-17794 in Crop Substrates Under Freezer Storage Conditions: Lab Project Number: ABR/94053. Unpublished study prepared by Ciba-Geigy Corp. 68 p.
43395504	Ross, J. (1994) Atrazine: Magnitude of Residues in or on Sugarcane and Processed Fractions Following Applications of AATREX NINE-0 or AATREX 4L-Amendment 1 (Supplement to EPA MRID No. 43160504): Lab Project
43934407	Number: ABR/93044. Unpublished study prepared by Ciba-Geigy Corp. 41 p. Hui, X.; Wester, R.; Maibach, H. (1995) Disposition of Atrazine in Rhesus Monkey Following Intravenous Administration: Interim Report: Lab Project Number: UCSF 95SU04: 333-95. Unpublished study prepared by University of California. 63 p.
43505801	Stubbs, D. (1994) Atrazine Technical: Supplement to Product Chemistry: Lab Project Number: PC-94-018: AK-53/2. Unpublished study prepared by Ciba Crop Protection. 71 p.
43508501	Tortora, N. (1993) Metabolism of (Triazine-(carbon 14)-Hydroxy-Atrazine in Lactating Goats: Addendum 1 to F-00123: Lab Project Number: G-34048: F-00123. Unpublished study prepared by Ciba-Geigy Corp. 12 p.
43532001	Chow, E.; Hart, S. (1995) 2-Year Dietary Toxicity/Oncogenicity Study with G- 34048 (Hydroxyatrazine) in Rats: Final Report: Lab Project Number: F-00125. Unpublished study prepared by Ciba-Geigy Corp. 2599 p.
43598602	Simoneaux, B. (1995) Nature of Atrazine and Simazine Metabolism in Animals and Plants: Lab Project Number: ABR-95039. Unpublished study prepared by Ciba-Geigy Corp. 67 p.
43598604	Cheung, M. Analysis of Human Urine to Determine Residues of Atrazine, G-28273, G-28279, and G-30033 Resulting From Oral Ingestion of Atrazine Including Storage Stability Results. Ciba-Geigy Corp.[now Syngenta] March 7, 1990. 44 p.
43598608	Johnson, E. (1993) An Evaluation and Critique of Atrazine Developmental Toxicology Safety Evaluations and Human Epidemiological Data: A Review of Published and Unpublished Studies for Hazard Potential and Risk Estimation: Lab Project Numbers: 832020: 832039. Unpublished study prepared by Ciba- Geigy Corp. 43 p.
43598609	Austin, H. (1995). A Critique of a Document Entitled "Summary: Low Birth

	Weight in Relation to Source and Characteristic of Drinking Water Supplies in Rural Areas of Iowa" by Peter Isacson, Dated October, 1989. No Laboratory Number. Unpublished study prepared by Ciba-Geigy Corp.[now Syngenta] 7 p.
43598610	Johnson, E. (1993) The Effects of Representative Groundwater Pesticides on Reproduction and in utero Development of Experimental Animals: Lab Project Number: 311U-4349-16: 356/311U3698. Unpublished study prepared by Ciba- Geigy Corp. 19 p.
43598614	Eldridge, J.; Fleenor-Heyser, D.; Extrom, P.; et al. (1994) Short-term effects of chlorotriazines on estrus in female Sprague-Dawley and Fischer 344 rats. Journal of Toxicology and Environmental Health 43:155-167.
43598616	Tennant, M.; Jerome, W.; Eldridge, J. (1993) Ultrastructural changes in rat hypothalamic arcuate nucleus following long-Term diaminochlorotriazine feeding. Steroid Biochemistry (Life Sci. Adv.) 12:21-26.
43598617	Tennant, M.; Hill, D.; Eldridge, J.; et al. (1994) Possible antiestrogenic properties of chloro-s-triazines in rat uterus. Journal of Toxicology and Environmental Health 43:183-196.
43598618	Tennant, M.; Hill, D.; Eldridge, J.; et al. (1994) Chloro-s-triazine antagonism of estrogen action: Limited interaction with estrogen receptor binding. Journal of Toxicology and Environmental Health 43:197-211
43598619	Safe, S.; Chen, I.; Liu, H.; et al. (1995) Failure of Atrazine and Simazine to Induce Estrogenic Responses in MCF-7 Human Breast Cancer Cells. Unpublished study prepared by Texas A&M Univ.; and Univ. of Western Ontario. 25 p.
43598620	Simpkins, J. (1995) Evaluation of a Hormonal Mechanism for Mammary Carcinogenesis of the Chlorotriazine Herbicides; Consensus Panel Report. Unpublished study prepared by Univ. of Florida. 44 p.
43598621	Wetzel, L.; Tisdel, M. (1995) Ciba Response to May 3, 1994, EPA Letter by Penelope Fenner-Crisp, Director, Health Effects Division, Office of Prevention, Pesticides and Toxic Substances, U.S. EPA. Unpublished study prepared by Ciba- Geigy Corp. 43 p.
43598622	McConnell, R. (1995) A Histomorphologic Reevaluation of the Ovaries, Uterus, Vagina, Mammary Gland, and Pituitary Gland From Sprague-Dawley and Fischer-344 Female Rats Treated With Atrazine: Lab Project Numbers: 483-278: 483-279. Unpublished study prepared by Ciba-Geigy Corp. 107 p.

	43598624	Lamb, J. (1995) Weight of the Evidence on the Oncogenic Potential of Atrazine: Consensus Panel Report. Unpublished study prepared by Jellinek, Schwartz & Connolly, Inc. 38 p.
	43598625	Delzell, E.; Sathiakumar, N. (1995) An Evaluation of Epidemiologic Studies of Exposure to Triazines and Cancer in Humans: Triazine. Unpublished study prepared by Ciba-Geigy Corp. 51 p.
	43598626	Sathiakumar, N.; Delzell, E.; Cole, P. (1995) Mortality Among Workers at Two Triazine Herbicide Manufacturing Plants. Unpublished study prepared by University of Alabama (at Birmingham). 31 p.
	43598627	Breckenridge, C. (1995) Response to EPA Review of Retrospective Triazine Mortality Studies. Unpublished study prepared by Ciba-Geigy Corp. 25 p.
1ENT	43598628	Larson, J.; Ash, S. (1993) (Carbon 14)-Atrazine: Nature of the Residue in Sugarcane: Supplement No. 1 to the Final Report: Lab Project Numbers: HWI 6117-181: 95-91. Unpublished study prepared by Hazleton Wisconsin, Inc. 231 p.
DOCUME	43598629	Larson, J.; Ash, S. (1992) (Carbon 14)-Atrazine: Nature of the Residue in Corn and Sorghum: Amendment No. 2 to the Final Report: Lab Project Numbers: HWI 6117-178: 51-91. Unpublished study prepared by Hazleton Wisconsin, Inc. 146 p.
VE D	43598630	Gold, B. (1995) Magnitude of Residues in Field Corn Forage, Silage-Stage Forage, Fodder, and Grain and Sweet Corn Ears and Forage Following Applications of AATREX 4L to Field Corn: Atrazine: Lab Project Numbers: ABR-91070: 35-A-88. Unpublished study prepared by Ciba-Geigy Corp. 563 p.
SCHI	43598631	Gold, B. (1995) Magnitude of Residues in Grain Sorghum Forage, Hay, Silage-Stage Forage, Fodder, Grain, and Processed Grain Fractions Following Applications of AATREX 4L to Grain Sorghum: Atrazine: Lab Project Number: ABR-91071: 34-88. Unpublished study prepared by Ciba-Geigy Corp. 503 p.
IS EPA ARC	43598632	Selman, F. (1995) Atrazine and MetolachlorMagnitude of Residues in Soil and Grain Sorghum Following Applications of AATREX 4L and DUAL 8E With and Wi6117-178: 51-91. Unpublished AATREX 4L and DUAL 8E With and Without the Addition of Acrysol G-110: Lab Project Numbers: 02-HR-002-91 CA: 03-HR-004-91 MS: 04-HR-002-91 IL. Unpublished study prepared by Ciba-Geigy Corp. 326 p.
NS	43598633	Wurz, R. (1995) Dietary Risk Exposure Assessment for Atrazine: Lab Project Number: ABR-94021. Unpublished study prepared by Ciba-Geigy Corp. 65 p.

43598634	Clarkson, J.; Golden, K. (1995) Human Exposure to Atrazine and Simazine Via Ground and Surface Drinking Water: Lab Project Number: 2852.0410. Unpublished study prepared by Ciba-Geigy Corp. 1350 p.
43598637	Selman, F. (1995) Summary of Assessment of Worker Exposure for Atrazine in Response to the U.S. Environmental Protection Agency Issuance of "The Triazine Herbicides Position Document 1 Initiation of Special Review.": Lab Project Number: ABR-95041. Unpublished study prepared by Ciba-Geigy Corp. 17 p.
43598638	Selman, F. (1995) Assessment of Worker Exposure for Atrazine in Response to the U.S. Environmental Protection Agency Issuance of "The Triazine Herbicides Position Document 1 Initiation of Special Review.": Lab Project Number: ABR- 95038. Unpublished study prepared by Ciba-Geigy Corp. 115 p.
43598639	Kendall, R.; Soloman, K.; Baker, D.; et al. (1995) Ecological Risk Assessment of Atrazine in North American Surface Waters: Lab Project Number: WEI 242.12- A. Unpublished study prepared by Atrazine Ecological Risk Assessment Panel. 926 p.
43689801	Krautter, G. 1995. ¹⁴ C-Propazine: disposition and metabolism in the rat. PTRL East, Inc Richmond, KY. PTRL Project No. 821, June 16, 1995.
43796001	Stubbs, D. (1995) Product Chemistry: Technical Atrazine: (Stability): (Final Report): Lab Project Number: PC-95-032: 458-95F. Unpublished study prepared by Ciba-Geigy Corp. 35 p.
43934402	Pettersen, J.C. and Turnier, J.C. 1995. One-year chronic toxicity study with atrazine technical in rats. Ciba-Geigy Environmental Health Center, Farmington, CT. Lab Study no. F-00171.
43934403	Safe, S. (1995) Failure of chloro-s-triazine derived compounds to induce estrogenic responses <i>in vivo</i> and <i>in vitro</i> . in Fundamental Applied Toxicology (in Press).
43934404	Morseth, S. (1996) Evaluation of the Luteinizing Hormone (LH) in Female Sprague-Dawley RatsPilot Study: Final Report: Lab Project Number: CHV 2386-109: 6791. Unpublished study prepared by Corning Hazleton Inc. (CHV). 33 p.
43934405	Morseth, S. (1996) Evaluation of the Luteinizing Hormone (LH) in Female Sprague-Dawley RatsMethod Validation: Final Report: Lab Project Number: CHV 2386-110: 6791F: 2386-110. Unpublished study prepared by Corning Hazleton Inc. (CHV). 32 p.
43934406	Morseth, S. (1996) Evaluation of the Luteinizing Hormone (LH) Surge in

	Atrazine-Exposed Female Sprague-Dawley Rats: Interim Report: Lab Project Number: CHV 2386-111: 6791E: 2386-111. Unpublished study prepared by Corning Hazleton Inc. (CHV). 624 p.
43934407	Hui, X.; Wester, R.; Maibach, H. (1995) Disposition of Atrazine in Rhesus Monkey Following Intravenous Administration: Interim Report: Lab Project Number: UCSF 95SU04: 333-95. Unpublished study prepared by University of California. 63 p.
43934408	Maibach, H. (1996) Disposition of Atrazine in Rhesus Monkey Following Intravenous Administration: Interim Report: Lab Project Number: ABR-95131: 333-95. Unpublished study prepared by Ciba-Geigy Corp. and University of California. 59 p.
43934411	Hackett, D.; Bray, L. (1996) Updated Dietary Exposure Assessment for Atrazine: Lab Project Number: ABR-96009. Unpublished study prepared by Ciba-Geigy Corp. 48 p.
43934412	Thalacker, F. (1996) Determination of Transfer Rate and Nature of the Residue(s) in Milk from (carbon 14)-Atrazine Treated Cows: Lab Project Number: CHW 6117-325: 287-95: AM044. Unpublished study prepared by Corning Hazleton, Inc. 105 p.
43934413	Clarkson, J.; Golden, K.; Tierney, D.; et al. (1996) Human Exposure to atrazine and Simazine via Ground and Surface Drinking Water: Update-I: Lab Project Number: 2852.0480: 696-95. Unpublished study prepared by Montgomery Watson. 1840 p.
43934414	Balu, K. and P. W. Holden. 1996. Ciba/State ground-water monitoring study for atrazine and its major degradation products in the United States. Final Report. Ciba Study No. 174-91. 24 p. Unpublished study prepared by Waterborne Environmental, Inc. Leesburg, VA.; submitted by Ciba-Geigy Corp., Greensboro, NC.
43934415	Sielken, R.; Bretzlaff, R.; Valez-Flores, C. (1996). Preliminary Risk Characterization for Atrazine and Simazine: Lab Project Number: 56. Unpublished study prepared by Sielken, Inc. 1254 p.
43934416	Brady, J.F. (1995). Analytical Method for the Semi-Quantitative Determination of Atrazine Mercapturate in Urine by Enzyme Immunoassay including Validation Study. Laboratory Project Identification Analytical Method Number AG-638. Unpublished study prepared by Ciba-Geigy Corp. [now Syngenta] 34 p.
43934417	Evaluation of the Potential Exposure of Workers to Atrazine During Commercial Mixing, Loading, and Spray Applications to Corn. Biological Field

	Phase. Honeycutt, R., Bennet, R., and DeGeare, M. (1996). HERAC, Inc. No. 95- 501HE. Ciba Study No. 178-95. Unpublished study prepared by Ciba Crop Protection.[now Syngenta] 839 pages.
43934418	Selman, F. (1996). Assessment of Potential Worker Exposure to Atrazine During Commercial Mixing, Loading, and Application to Corn: Interim Report: Lab Project Number: ABR-95133: 101930: 178-95. Unpublished study prepared by Ciba-Geigy Corp. [now Syngenta] 64 p.
43934419	Solomon, K. R., D. B. Baker, R. P. Richards, K. R. Dixon, S. J. Kline, T. W. La Point, R. J. Kendall, C. P. Weisskopf, J. M. Giddings, J. P. Giesy, L. W. Hall, Jr., and M. Williams. Ecological risk assessment of atrazine in North American surface waters. Environ. Toxicol. Chem. 15(1):31-76.
43934420	Ecorisk, Inc. (1995) Ecological Risk Assessment of Atrazine in North American Surface Waters: Additional Considerations of Exposure and Ecological Effects. Unpublished study. 35 p.
43934421	Benjamin, R. (1996) Characterization of Selenastrum Capricornutum Response to Episodic Atrazine Exposure: Lab Project Number: 09524: TIWET 09542: TIWET-09524. Unpublished study prepared by The Institute of Wildlife and Environmental Toxicology, Clemson University. 92 p.
43934422	Drewing, L. (1996) Supplement to Ciba's Benefits Analysis of Atrazine and Simazine: Lab Project Number: EV-1991-3: OPP-30000-60: SS-AGR-9. Unpublished study prepared by Ciba-Geigy Corp. 532 p.
44008601	Delzell, E, I. Brill, and C. Beall. (1996). A follow-up Study of Workers at the Ciba-Geigy St. Gabriel Plant. Laboratory Study No. Supplemental Document No. 11181. Unpublished study prepared by Ciba-Geigy Corp.[now Syngenta] 42 p.
44008602	Gass, R. and G.A. Stalder. (1993). Atrazine: An Epidemiology Study at the Schweizerhalle Plant. Laboratory Study No. Supplemental Document No. 11182. Unpublished study prepared by Ciba-Geigy Corp.[now Syngenta] 36 p.
44152102	Morseth, S. (1996) Evaluation of the Luteinizing Hormone (LH) Surge in Atrazine-Exposed Female Sprague-Dawley Rats(Final) 6-Month Interim Report: Lab Project Number: CHV 2386-111: 2386-111: 6791E. Unpublished study prepared by Corning Hazleton Inc. 727 p.
44152104	Simpkins, J. (1996) Evaluation of a Hormonal Mode of Action for Mammary Carcinogenesis of the Chlorotriazine Herbicides: Second Concensus Panel Report. Unpublished study prepared by Ciba-Geigy Corp. 37 p.
44152105	Consensus Panel (1995) Weight of the Evidence on the Oncogenic Potential of

Atrazine: Consensus Panel Report. Unpublished study. 38 p.

- An Updated Assessment of Worker Exposure for Atrazine in Response to the U.S. Environmental Protection Agency Issuance of the "Triazine Herbicides Position Document 1 Initiation of Special Review". Supplement to ABR-95038: Assessment of Worker Exposure for Atrazine in Response to the U.S. Environmental Protection Agency Issuance of the "Triazine Herbicides Position Document Initiation of Special Review" (MRID 435986-38). Laboratory Project Number: ABR-96071. Unpublished study by Ciba Crop Protection.[now Syngenta] 124 pages.
- Selman, F.B. (1996). Supplemental Data and Evaluation of Exposure to Lawn Care Operators Using Atrazine in the Southern United States. Supplement to ABR-95038: Assessment of Worker Exposure from Atrazine in Response to the U.S. Environmental Protection Agency Issuance of the "Triazine Herbicides Position Document – Initiation of Special Review" (MRID 435986-38). Laboratory Project Number: ABR-96069. Unpublished study by Ciba Crop Protection.[now Syngenta] 13 pages.
- 44152109 Selman, F.B. and L. Rosenheck. (1996). Evaluation of the Potential Exposure of Workers to Atrazine During Commercial Mixing, Loading, and Spray Applications to Corn: (Final Report): Lab Project Number: ABR-95133. Unpublished study prepared by Ciba Crop Protection.[now Syngenta] 199 p.
- 44152110 Bodalbhai, L. (1996) Analytical Method for the Determination of Residues of Atrazine, G-30033, G-28279, and G-28273 in Urine by Gas Chromatography/Mass Selective Detection Including Validation Data: Lab Project Number: 264-95: AG-637: 101930. Unpublished study prepared by Ciba Crop Protection. 91 p.
- 44152111 Honeycutt, R.C., Bennett, R.M. and DeGeare, M.A. (1996). Evaluation of the Potential Exposure of Workers to Atrazine during Commercial Mixing, Loading, and Spray Application to Corn (EPA-Subpart U) -- Biological Field Phase: Final Report: Lab Project Number: 178-95: 95-501HE: 95-517. Unpublished study prepared by Ciba Crop Protection [now Syngenta]. 687 pages, 2 volumes.
- 44152113 Hui, X.; Wester, R.; Simoneaux, B.; et al. (1996) Disposition of Atrazine in Rhesus Monkey Following Oral Administration: Lab Project Number: ABR-96094: UCSF 96SU01: 306-96. Unpublished study prepared by University of California, San Francisco and Ciba Crop Protection. 171 p.
- Hui, X.; Gilman, S.; Simoneaux, B.; et al. (1996) *In vivo* Percutaneous Absorption of Atrazine in Man: Lab Project Number: ABR-96067: BDH-081-2: H832-11835-01. Unpublished study prepared by UCSF; UC Davis; and Ciba Crop Protection. 297 p.

44152115 Bray, L. (1996) Revised Dietary Exposure Assessment for Atrazine: Lab Project Number: ABR-96105. Unpublished study prepared by Ciba-Geigy Corp. 97 p. Boyette, S. (1996) Atrazine--Magnitude of the Residues In or On Corn: (Final 44152117 Report): Lab Project Number: ABR-96087: 25-96: 101930. Unpublished study prepared by Ciba-Geigy Corp. 211 p. 44152118 Boyette, S. (1996) Atrazine--Magnitude of the Residues In or On Grain Sorghum: Lab Project Number: ABR-96088: 26-96: 101930. Unpublished study prepared by Ciba-Geigy Corp. 286 p. 44152119 Thalacker, F.; Ash, S. (1996) (Carbon 14)-Atrazine: Nature of the Residues in Corn and Sorghum: Amendment No. 3 to the Final Report: MRID 42547116: Lab PW 6117-325: 287-95: AM044. Report: MRID 42547116: Lab Project Number: HWI 6117-178: 51-91. Unpublished study prepared by Hazleton Wisconsin, Inc. 31 p. 44152120 Thalacker, F.: Ash, S. (1996) (Carbon 14)-Atrazine: Nature and Magnitude of the Hydroxy-triazine and Chlorotriazine Residues in Sorghum Following a Pre-emergence Application at 2 lb. ai/A: Lab Project Number: CHW 6117-337: 229-96. Unpublished study prepared by Corning Hazleton, Inc. 65 p. 44152121 Thalacker, F.; Ash, S. (1996) (Carbon 14)-Atrazine: Nature and Magnitude of the Hydroxy-triazine and Chlorotriazine Residues in Corn Following a Pre-emergence Application at 2 lb. ai/A: Lab Project Number: CHW 6117-335: 228-96. Unpublished study prepared by Corning Hazleton, Inc. 65 p. 44152122 Clarkson, J.; Hines, N.; Tierney, D.; et al. (1996) Human Exposure to Atrazine and Simazine via Ground and Surface Drinking Water: Update--II: Supplement to MRID No. 43934413 (and No. 43598634): Lab Project Number: 2852.0540: 696-95. Unpublished study prepared by Montgomery Watson. 2267 p. 44152123 Tierney D and Balu K. 1996. Summary of Voluntary Atrazine Monitoring Program at Selected Community Water Systems. October 29, 1996. Submitted by Novartis. 44152124 Tierney, D.; Balu, K. (1996) Summary of Sampling Methods for Estimating Annual Mean Concentrations of Atrazine in Community Water Systems: Lab Project Number: ABR-96103. Unpublished study prepared by Ciba Crop Protection. 162 p. Sielken, R.; Bretzlaff, R.; Valdez-Flores, C. (1996) Risk Characterization for 44152125 Atrazine and Simazine: Report Supplement: Lab Project Number: 56. Unpublished study prepared by Sielken, Inc. 1245 p.

44152126	Giddings, J.; Hall, L.; Kendall, R.; et al. (1996) Beyond the Probabilistic Approach: Risk Assessment of Atrazine in North American Surface Waters: Supplement to MRID 43934419. Unpublished study prepared by Ecorisk, Inc. 54 p.
44152127	Hill, E.; Crouse, K. (1996) The Role of Atrazine in Managing Weed Biotypes Resistant to ALS-Inhibitor Herbicides. Unpublished study prepared by Ciba Crop Protection. 87 p.
44222601	Balu, K.; Holden, P. (1996) Ciba/State Ground-Water Monitoring Study for Atrazine and Its Major Degradation Products in the United States: Amendment to the Final ReportMRID 43934414: Lab Project Number: 174-91: 242.01: CIGNC01E-5. Unpublished study prepared by Waterborne Environmental, Inc.; Ciba Crop Protection; and Alta Analytical Lab, Inc. 13 p.
44222602	Balu, K.; Holden, P. (1997) Ciba/State Ground-Water Monitoring Study for Atrazine and Its Major Degradation Products in the United States: Second Amendment to the Final ReportMRID 43934414: Lab Project Number: 174-91: 242.01: CIGNC01E-5. Unpublished study prepared by Waterborne Environmental, Inc.; Ciba Crop Protection; and Alta Analytical Lab, Inc. 14 p.
44256501	Delzell, E.; Sathiakumar, N. (1996) An Updated Follow-up Study of Workers at the Ciba-Geigy McIntosh Plant: Final Report. Unpublished study prepared by University of Alabama at Birmingham. 76 p.
44256502	Delzell, E.; Sathiakumar, N. (1996) A Combined Analysis of Mortality Among Workers at the Ciba-Geigy Corporation's McIntosh and St. Gabriel PlantsAn Update. Unpublished study prepared by University of Alabama at Birmingham. 113 p.
44315401	Simpkins, J. (1997) Evaluation of a Hormonal Mode of Action for Mammary Carcinogenesis of the Chloro-s-triazine Herbicides: Third Consensus Panel Report. Unpublished study prepared by Novartis Crop Protection, Inc. 27 p.
44315402	Safe, S.; McDougal, A.; Wilson, C. (1997) Induction of estradiol 2-hydroxylase activity in MCF-7 human breast cancer cells by pesticides and carcinogens. Environmental Toxicology and Pharmacology p. 1-5.
44315403	Selman, F.B. and Rosenheck, L. (1996). Assessment of Potential Worker Exposure to Atrazine During Commercial Mixing, Loading, and Application to Corn (MRID 441521-09). Amendment 1. Laboratory Project Number ABR- 95133. Unpublished study prepared by Novartis Crop Protection, Inc.[now Syngenta] 29 pages.
44315404	Selman, F.B. and Rosenheck, L. (1996). Presentation of Data from ABR-95133

"Assessment of Potential Worker Exposure to Atrazine During Commercial Mixing, Loading, and Application to Corn" from Use in the Pesticide Handler's Exposure Database (PHED 1.1). Laboratory Project Number ABR-97068. Unpublished study prepared by Novartis Crop Protection, Inc. [now Syngenta] 97 pages. 44315405 Simoneaux, B. (1996) Disposition of Atrazine in Rhesus Monkey Following Oral Administration: Final Report Amendment 1: Lab Project Number: ABR-96094: 306-96. Unpublished study prepared by Novartis Crop Protection, Inc. 54 p. Bray, L.; Boyette, S.; Breckenridge, C. et al. (1997) Summary of the Nature and 44315406 Magnitude of Atrazine Residues on Corn and Sorghum Grain, Forage and Fodder and the Basis for the Dietary Risk Assessment. Unpublished study prepared by Novartis Crop Protection, Inc. 17 p. Bray, L. (1997) Revised Dietary Assessment for Atrazine Including Two 44315407 Exposure Scenarios: Lab Project Number: ABR-97064: 396-97. Unpublished study prepared by Novartis Crop Protection, Inc. 193 p. 44315408 Thalacker, F. (1996) (Carbon-14)-Atrazine: Nature and Magnitude of the Hydroxy-triazine and Chlorotriazine Residues in Corn Following a Pre-Emergence Application at 2 lb. ai/A: Amendment No. 2 to the Final Report: Lab Project Number: 6117-335: 228-96: BIOL-97003. Unpublished study prepared by Covance Labs., Inc. 78 p. Thalacker, F.; Ash, S. (1996) ¹⁴C-Atrazine: Nature and Magnitude of the 44315409 Hydroxy-triazine and Chlorotriazine Residues in Sorghum Following a Pre-Emergence Application at 2 lb. ai/A: Amendment No. 2 to the Final Report: Lab Project Number: 6117-337: 229-96: BIOL-97004. Unpublished study prepared by Covance Labs., Inc. 88 p. 44315410 Boyette, S. (1996) Atrazine--Magnitude of the Residues in or on Corn: Amendment 1: Lab Project Number: ABR-96087: 25-96: 101930. Unpublished study prepared by Novartis Crop Protection, Inc. 533 p. {OPPTS 860.1500}. 44315411 Boyette, S. (1996) Atrazine-Magnitude of the Residues in or on Grain Sorghum: Amendment 1: Lab Project Number: ABR-96088: 26-96: 26-96-A. Unpublished study prepared by Novartis Crop Protection, Inc. 366 p. {OPPTS 860.1500}. 44315412 Lin, K. (1997) Validation of Analytical Method AG-484A for the Determination of Residues of Atrazine, G-30033, G-28279 and G-28273 in or on Corn and Sorghum: Lab Project Number: ABR-97056: 300-97: AG-484A. Unpublished study prepared by Novartis Crop Protection, Inc. 141 p. {OPPTS 860.1340}. 44315413 Bray, L. (1997) Rationale for the Dairy Cattle Diet Utilized in the Revised

Dietary Exposure Assessment for Atrazine and Simazine: Lab Project Number: ABR-97067: 400-97. Unpublished study prepared by Novartis Crop Protection, Inc. 15 p. 44315414 Clarkson, J.; Hines, N.; Tierney, D. et al. (1997) Human Exposure to Atrazine and Simazine via Ground and Surface Drinking Water: Update--III: Supplement: Lab Project Number: 1176029. 010301: 696-95. Unpublished study prepared by Montgomery Watson. 1958 p. 44315417 Brooks, R.; Crouse, K.; Hill, E. et al. (1997) Supplement to Novartis' Benefits Analysis of Atrazine and Simazine: Additional Information on Weed Control, Yield and Impact to Growers and Livestock Producers June 1997. Unpublished study prepared by Novartis Crop Protection. 187 p. 44488801 Lail, L. (1998) Technical Atrazine: Product Chemistry (Preliminary Analysis): Lab Project Number: 206-98: ASR-073: 145-94. Unpublished study prepared by Novartis Crop Protection, Inc. 17 p. {OPPTS 830.1700} 44518401 Van Kampen, W.; Thus, J. (1996) The Determination of Diflubenzuron and Related Substances in Technical Diflubenzuron Validation and Typical Batch Analysis: Lab Project Number: C. 303.10.013: 56834/78/95. Unpublished study prepared by Solvay Duphar B.V. 45 p. 44544701 Morseth, S. (1998) Chronic (12-24 Month) Study in Rats with Atrazine Technical. Study No. 2386-108. Unpublished study prepared by Covance Laboratories Inc. 2251 p. 44590401 Hackett, A. (1998) 1997 Annualized Mean Concentrations (AMCs) and 1997 and Early 1998 Analytical Results: Surface Water Monitoring Program: Monstanto Study No. 94-27-R-3. Unpublished study prepared by Monsanto Co. and the Acetochlor Registration Partnership. 92 p. 44597601 Clarkson J, Hines N, Tierney D, Christensen B, and Mattan C. 1998. Human exposure to atrazine and simazine via ground and surface drinking water: Update - IV. June 26, 1998. Submitted by Novartis. Supplement to MRID 445976-01: Tierney D, Christensen B, Mattan C, and Dando C. 1999. Atrazine annual maximum and mean concentrations at CWS in 21 major use states, PLEX Database, 1993-1998. December 13, 1999. Submitted by Novartis. Boyette, S. (1998) Atrazine--Magnitude of the Residues in or on Corn 44597602 Amendment 2: MRID No. 44152117: Lab Project Number: ABR-96087: 25-96: 0S-HR-601-6. Unpublished study prepared by Novartis Crop Protection, Inc. 608 p. {OPPTS 860.1500}

44597603	Boyette, S. (1998) AtrazineMagnitude of the Residues in or on Grain Sorghum Amendment 2: MRID No. 44152118: Lab Project Number: ABR-96088: 26-96: 0S-HR-110-96. Unpublished study prepared by Novartis Crop Protection, Inc. 374 p. {OPPTS 860.1500}
44597604	Selman, F.B. (1998). Comparison of Exposure Assessments to Atrazine and Simazine for Commercial Operators and Farmers who Mix, Load, and/or Apply Atrazine. Novartis Laboratory Number 542-98. ABR-98068. Unpublished study prepared by Novartis.[now Syngenta] 16 pages.
44597605	Selman, F.B. (1998). Evaluation of the Potential Internal Dose of Atrazine to Workers During Mixing-Loading and Application of Atrazine Products – Biological Monitoring. Novartis Laboratory Number 179-95. ABR-97094. Unpublished study prepared by Novartis [now Syngenta]. 182 pages.
44597606	Honeycutt, R.C. and M.A. DeGeare. (1998). Evaluation of the Potential Internal Dose of Atrazine to Workers During Mixing-Loading and Application of Atrazine Products – Biological Field Phase. Novartis Laboratory Number 179-95. Unpublished study prepared by Novartis [now Syngenta]. 912 pages.
44711001	Tierney, D.; Christensen, B.; Mattan, C. (1998) Human Exposure to Atrazine and Simazine via Ground and Surface Drinking Water: Update IV: Supplement to EPA MRID No. 44597601: Cumulative Community Water Systems (CWS) Population and Exposure Distributions: Lab Project Number: 00300: 696-95. Unpublished study prepared by En. Fate, LLC. 969 p.
44713802	Paul, H. J.; Dunsire, J.P.; Hedley, D. (1993). The Absorption, Distribution, Degradation and Excretion of [U- ¹⁴ C]-Triazine G 30027 in the Rat. Inveresk Research International, Tranent, EH33 2NE, Scotland. IRI Report No. 9523. December 10, 1993
44723701	Bachmann, M. (1994) 3 Month Oral Toxicity Study in Rats (Administration in Food) (Atrazine): Lab Project Number: 931063: 351270. Unpublished study prepared by Novartis Crop Protection, AG. 392 p.
44856901	Brady, J. (1999) Validation Study of an Atrazine Immunoassay for Drinking Water Monitoring in Compliance with the Safe Drinking Water Act: Lab Project Number: RS-WM-009-98: 101178: 634-97. Unpublished study prepared by Novartis Crop Protection, Inc. and Ohio Dept. of Health. 267 p.
44883601	Prochaska, L.M. (1999). Dissipation of Dislodgeable Foliar Residues of Atrazine on Field Corn. Stewart Project Number: SARS-97-54; Wildlife International Project Number: 468C-105. Unpublished study prepared by Stewart Agricultural Research Services. 131 pages.

- Lui, C.; Thakur, A. (1999) Statistical Report for Survival and Mammary Tumor Analysis from the Fischer 344/Lati Rat Study (Pinter et al., 1990): Lab Project Number: 6117-998: 1109-99. Unpublished study prepared by Covance Laboratories, Inc. 28 p
- Hofen, J. (1999) Determination of Transferable Residues on Turf Treated with Atrazine. Stewart Project Number: SARS-98-81. Ricerca Project Number: 7617-98-0197-CR Unpublished study prepared by Stewart Agricultural Research Services, Inc. and Ricerca, Inc. 358 pages.
- 44958801 Rosenheck, L. (1999). Determination of Transferable Turf Residues on Turf Treated with Atrazine Applied in a Granular Fertilizer Formulation. Novartis Laboratory Number 805-98. ABC Laboratory Number 45035. Unpublished Study prepared by Novartis [now Syngenta]. 183 pages.
- 44972201 ORETF Studies:

ORETF Study Number OMA001. D. Larry Merricks (Director), Dennis R. Klonne, Susan C. Artz, March 4, 1999. Exposure of Professional Lawn Care Workers During the Mixing, Loading, and Application of Granular Turf Pesticides Utilizing a Surrogate Compound. Agrisearch Inc. (Frederick, MD) and Ricerca, Inc. (Painesville, OH). Laboratory report numbers 3701 (Agrisearch) and 69331-96-0182-CR-001 (Ricerca). Unpublished.

ORETF Study Number OMA002. Merricks, L., Klonne, D.R., and Smith, L.D. January 22, 1999. Exposure of professional Lawn Care Workers during the Mixing and Loading of Dry and Liquid Formulations and the Liquid Application of Turf Pesticides Utilizing a Surrogate Compound. Agrisearch, Inc. Unpublished.

ORETF Study Number OMA003. Klonne, D.R., Honeycutt, R. February 3, 1999. A Generic Evaluation of Homeowner Exposure Associated with Granular Turf Pesticide Handling and Application to Residential Lawns. H.E.R.A.C. Inc., and Outdoor Residential Exposure Task Force. Unpublished.

ORETF Study Number OMA004. Klonne, D.R., Artz, S.C., and Merricks, L.D. February 22, 1999, A Generic Evaluation of Homeowner Exposure Associated with Liquid Pesticide Handling and Hose-End Application (Ready-to-Use and Ortho DIAL'n SPRAY) to Residential Lawns.

- 44997001 Mattan, C.; Dando, C.; Tierney, D. et al. (1999) Atrazine Voluntary Monitoring Program Analytical Results 1993-1998: Final Report: Lab Project Number: 00900: 11940-98. Unpublished study prepared by En-Fate LLC. 232 p.
- 44997003 Mattan, C.; Dando, C.; Tierney, D. et al. (1999) Atrazine Annual Maximum and
| | Mean Concentrations at CWS in 21 Major Use States, PLEX Database, 1993-
1998: Supplemental to EPA MRID Number 44597601: Final Report: Lab Project
Number: 00900: 696-95. Unpublished study prepared by En-Fate LLC. 2346 p. | |
|----------|--|--|
| 45020001 | Cohn, S. L. Unpublished. An evaluation of the toxicity and sublethal effects of atrazine on the physiology and growth phases of the aquatic macrophyte <i>Vallisneria americana</i> L. American Univ., Ph. D Thesis. (1985). | |
| 45020002 | Carder, J. P. and K. D. Hoagland. 1998. Combined effects of alachlor and atrazine on benthic algal communities in artificial streams. Environ. Toxicol. Chem. 17(7):1415-1420. | |
| 45020003 | Davies, P. E., L. S. J. Cook and J. L. Barton. 1994. Triazine herbicide contamination of Tasmanian streams: Sources, concentrations and effects on biota. Aust. J. Mar. Freshwater Res. 45:209-226. | |
| 45020004 | Jurgensen, T. A. and K. D. Hoagland. 1990. Effects of short-term pulses of atrazine on attached algal communities in a small stream. Arch. Environ. Contam. Toxicol. 19:617-623. | |
| 45020005 | Kosinski, R. J. 1984. The effect of terrestrial herbicides on the community structure of stream periphyton. Environ. Poll. (Ser. A) 36:165-189. | |
| 45020006 | Kosinski, R. J. and M. G. Merkle. 1984. The effect of four terrestrial herbicides on the productivity of artificial stream algal communities. J. Environ. Qual. 13(1):75-82. | |
| 45020007 | Krieger, K. A., D. B. Baker and J. W. Kramer. 1988. Effects of herbicides on stream <i>Aufwuchs</i> productivity and nutrient uptake. Arch. Environ. Contam. Toxicol. 17:299-306. | |
| 45020008 | Lakshminarayana, J. S. S., H. J. O'Neill, S. D. Jonnavithula, D. A. Leger and P. H. Milburn. 1992. Impact of atrazine-bearing agricultural tile drainage discharge on planktonic drift of a natural stream. Environ. Poll. 76:201-210. | |
| 45020009 | Lynch, T. R., H. E. Johnson and W. J. Adams. 1985. Impact of atrazine and hexachlorobiphenyl on the structure and function of model stream ecosystems. Environ. Toxicol. Chem. 4:399-413. | |
| 45020010 | Moorhead, D. L. and R. J. Kosinski. 1986. Effect of atrazine on the productivity of artifical stream algal communities. Bull. Environ. Contam. Toxicol. 37:330-336. | |
| 45020011 | DeNoyelles, F., W. D. Kettle and D. E. Sinn. 1982. The responses of plankton communities in experimental ponds to atrazine, the most heavily used pesticide in | |
| | | |

the United States. .

- 45020012 Herman, D., N. K. Kaushik and K. R. Solomon. 1986. Impact of atrazine on periphyton in freshwater enclosures and some ecological consequences. J. Fish. Aquat. Sci. 43:1917-1925.
- 45020013 Baturo, W., L. Lagadic and T. Caquet. 1995. Growth, fecundity and glycogen utilization in *Lymnaea palustris* exposed to atrazine and hexachlorobenzene in freshwater mesocosms. Environ. Toxicol. Chem. 14(3):503-511.
- 45020014 Hoagland, K. L., R. W. Drenner, J. D. Smith and D. R. Cross. 1993. Freshwater community responses to mixtures of agricultural pesticides: Effects of atrazine and Bifenthrin. Environ. Toxicol. Chem. 12:627-637.
- 45020015 Larsen, D. P., F. DeNoyelles, Jr., F. Stay and T. Shiroyama. 1986. Comparisons of single-species, microcosm and experimental pond responses to atrazine exposure. Environ. Toxicol. Chem. 5:179-190.
- 45020016 Lay, J. P., A Muller, L. Peichl, W. Klein and F. Korte. 1984. Longterm effects of the herbicides atrazine and dichlobenil upon the phytoplankton density and physio-chemical conditions in compartments of a freshwater pond. Chemosphere 13(7):821-832.
- 45020017 Neugebaur, K., F.-J. Zieris and W. Huber. 1990. Ecological effects of atrazine on two outdoor artifical freshwater ecosystems. Z. Wasser-Abwasser-Forsch. 23:11-17.
- 45020018 Johnson, J. R. and K. T. Bird. 1995. The effects of the herbicide atrazine on *Ruppia maritima* L. growing in autotrophic versus heterotrophic cultures. Botanica Marina 38:307-312.
- 45020020 Hamilton, P. B. 1987. The impact of atrazine on lake periphyton communities, including carbon uptake dynamics using track autoradiography. Environ. Poll. 46:83-103.
- 45020021 Bester, K., H. Huhnerfuss, U. Brockmann and H. J. Rick. 1995. Biological effects of triazine herbicide contamination on marine phytoplankton. Arch. Environ. Contam. Toxicol. 29:277-283.
- 45020022 Juttner, I., A. Peither, J. P. Lay, A. Kettrup and S. J. Ormerod. 1995. An outdoor mesocosm study to assess ecotoxicological effects of atrazine on a natural plankton community. Arch. Environ. Contam. Toxicol. 29:435-441.).
- 45058701 Minnema, D.J. (2000) Comparison of the LH surge in female rats administered atrazine, simazine or DACT via oral gavage for one month. Covance # 6117-398 Novartis # 1198-98. Covance Labs, Vienna, VA. Feb. 29, 2000. Unpublished

study.

45058702 Zirkin, B. (2000) Atrazine Effects on Testosterone and Androgen-Dependent Reproductive Organs in Peripubertal Male Rats. Unpublished study prepared by Novartis Crop Protection, Inc. 26 p. 45058703 Cheung M, Yokley R, Tierney D, and Ross R. 2000. Novartis/Community Water System surface water monitoring study for atrazine and its major degradation products in seven states in the United States. February 17, 2000. Tierney D, Christensen B, Mattan C, and Dando C. 2000. Human exposure to 45058704 atrazine and simazine via ground and surface drinking water: Update - V. February 18, 2000. Submitted by Novartis. 45087401 Stratton, G. W. 1984. Effects of the herbicide atrazine and its degradation products, alone and in combination, on phototrophic microorganisms. Bull. Environ. Contam. Toxicol. 29:35-42. 45087401 Stratton, G. W. 1984. Effects of the herbicide atrazine and its degradation products, alone and in combination, on phototrophic microorganisms. Bull. Environ. Contam. Toxicol. 29:35-42. 45087403 Cunningham, J. J., W. M. Kemp, M. R. Lewis and J. C. Stevenson. 1984. Temporal responses of the macrophyte, *Potamogeton perfoliatus* L., and its associated autotrophic community to atrazine exposure in estuarine microcosms. Estuaries 7(4B):519-530. 45087404 Jones, T. W. and P. S. Estes. 1984. Uptake and phytotoxicity of soil-sorbed atrazine for the submerged aquatic plant, Potamogeton perfoliatus L. Arch. Environ. Contam. Toxicol. 13:237-241. 45087405 Lytle, J. S. and T. F. Lytle. 1998. Atrazine effects on estuarine macrophytes Spartina alterniflora and Juncus roemerianus. Environ. Toxicol. Chem. 17(10):1972-1978. (MRID #). 45087406 Plumley, F. G. and D. E. Davis. 1980. The effects of a photosynthesis inhibitor atrazine, on salt marsh edaphic algae, in culture, microecosystems, and in the field. Estuaries 3(4):271-277. 45087407 Brockway, D. L., P. D. Smith and F. E. Stancil. 1984. Fate and effects of atrazine in small aquatic microcosms. Bull. Environ. Contam. Toxicol. 32:345-353. 45087408 Correll, D. L. and T. L. Wu. 1982b. Atrazine toxicity to submersed vascular plants in simulated estuarine microcosms. Aquatic Botany 14:151-158.

45087409	Fleming, W. J., M. S. Ailstock, J. J. Momot and C. M. Norman. 1991. Response of sago pondweed, a submerged aquatic macrophyte, to herbicides in three laboratory culture systems, p. 267-275. <i>In</i> : Gorsuch, J. W., W. R. Lower, W. Wang and M. A. Lewis (eds.). Plants for toxicity assessment: Second volume. ASTM STP 1115.
45087410	Forney, D. R. and D. E. Davis. 1981. Effects of low concentrations of herbicides on submersed aquatic plants. Weed Sci. 29:677-685.
45087411	Gruessner, B. and M. C. Watzin. 1996. Response of aquatic communities from a Vermont stream to environmentally realistic atrazine exposure in laboratory microcosms. Environ. Toxicol. Chem. 15(4):410-419.
45087412	Hamala, J. A. and H. P. Kollig. 1985. The effects of atrazine on periphyton communities in controlled laboratory ecosystems. Chemosphere 14(9):1391-1408.
45087413	Johnson, B. T. 1985. Potential impact of selected agricultural chemical contaminants on a northern prairie wetland: A microcosm evaluation. Environ. Toxicol. Chem. 5:473-485.
45087414	Lampert, W., W. Fleckner, E. Pott, U. Schober and K-U. Storkel. 1989. Herbicide effects on planktonic systems of different complexity. Hydrobiologia 188/189:415-424.
45087415	Langan, M. M. and K. D. Hoagland. 1996. Growth responses of <i>Typhya latifolia</i> and <i>Scirpus acutus</i> to atrazine contamination. Bull. Environ. Contam. Toxicol. 57:307-314.
45087416	Pratt, J. R., N. J. Bowers, B. R. Niederlehner and J. Cairns, Jr. 1988. Effects of atrazine on freshwater microbial communities. Arch. Environ. Contam. Toxicol. 17:449-457.
45087417	van den Brink, P. J., E. van Donk, R. Gylstra, S. J. H. Crum and T. C. M. Brock. 1995. Effects of chronic low concentrations of the pesticides chlorpyrifos and atrazine in indoor freshwater microcosms. Chemosphere 31(5):3181-3200.
45087418	Stay, F. S., A. Katko, C. M. Rohm, M. A. Fix and D. P. Larsen. 1989. The effect of atrazine on microcosms developed from four natural plankton communities. Arch. Environ. Contam. Toxicol. 18:866-875.
45087419	Stay, F. S., D. P. Larsen, A. Katko and C. M. Rohm. 1985. Effects of atrazine on community level responses in Taub microcosms, p. 75-90. <i>In:</i> Boyle, T. P. (ed.). Validation and predictability of laboratory methods for assessing the fate and effects of contaminants in aquatic ecosystem. ASTM STP 865. (MRID #

217

45087419).

- 45088212 Fairchild, J. F., D. S. Ruessler, P. S. Haverland and A. R. Carlson. 1997. Comparative sensitivity of *Selenastruum capricorntum* and *Lemna minor* to sixteen herbicides. or. Arch. Environ. Contam. Toxicol. 32:353-357.
- 45088215 Walsh, G. E. 1972. Effects of herbicides on photosynthesis and growth of marine unicellular algae. Hyacinth Control J. 10:45-48.
- 45088231 Univ. Maryland. 1998. The influence of salinity on the chronic toxicity of atrazine to sago pondweed: Filling a data need for development of an estuarine chronic condition. Univ. Maryland, Agr. Exper. Sta., Wye Res. Educ. Center, Printed by US EPA for Chesapeake Bay Program. EPA 903-R-98-020.
- 45145601 Cheung, M.; Yorkley, R.; Tierney, D. et al. (2000) Novartis/Community Water System Surface Water Monitoring Study for Atrazine and its Major Degradation Products in Seven States in the United States: Supplementary Report--Regression Analyses: Supplemental to EPA MRID 45058703: Lab Project Number: 419-97. Unpublished study prepared by Developmental Resources/Chemical Support Department, Novartis Crop Protection. 100 p.
- 45152101 Delzell, E.; Sathiakumar, N.; MacLennan, P. (2000) Atrazine: A Follow-up Study of Mortality Among Workers at the Novartis St. Gabriel Plant: Final Report. Unpublished study prepared by University of Alabama, School of Public Health, Department of Epidemiology. 58 p.
- 45166901 Cooper, R.L., Stoker, T.E., Tyrey, L., Goldman, J.M., and McElroy, W.K. 2000. Atrazine disrupts the hypothalamic control of pituitary-ovarian function. *Tox. Sci.* 53: 297-307.
- 45166902 Stoker, T.E., Robinette, C.L., and Cooper, R.L. (1999) Maternal exposure to atrazine during lactation suppresses suckling-induced prolactin release and results in prostatitis in the adult male offspring. *Tox. Sci.* 52;68-79.
- 45202901 Benson, B. and G. M. Boush. 1983. Effect of pesticides and PCBs on budding rates of green hydra. Bull. Environ. Contam. Toxicol. 30:344-350.
- 45202902 Birge, W. J., J. A. Black and D. M. Bruser. 1979. Toxicity of organic chemicals to embryo-larval stages of fish. US. EPA, Office of Toxic Substances, EPA-560/11-79-007. 60 p.
- 45202903 Cossarini-Dunier, M. A. Demael, J. L. Riviere and D. Lepot. 1988. Effects of oral doses of the herbicide atrazine on carp (*Cyprinus carpio*). Ambio 17(6):401-405.
- 45202904 Davies, P. E., L. S. J. Cook and D. Goenarso. 1994. Sublethal responses to

	pesticides of several species of Australian freshwater fish and crustaceans and rainbow trout. Environ. Toxicol. Chem. 13(8):1341-1354.
45202905	Alazemi, B. M., J. W. Lewis and E. B. Andrews. 1996. Gill damage in the freshwater fish <i>Gnathonemus petersii</i> (Family: Mormyridae) exposed to selected pollutants: An ultrastructural study. Environ. Technol. 17:225-238.
45202905	Douglas, W. S., A. McIntosh and J. C. Clausen. 1993. Toxicity of sediments containing atrazine and carbofuran to larvae of the midge <i>Chironomus tentans</i> . Environ. Toxicol. Chem. 12:847-853.
45202906	Eisler, R. 1989. Atrazine hazards to fish, wildlife, and invertebrates: A synoptic review. USDI, Fish & Wildl. Serv., Biol. Rep. 85(1.18), Contaminant Hazard Rev. Rep. No. 18. 53 p.
45202907	Fischer-Scherl, T. A. Veeser, R. W. Hoffmann, C. Kühnhauser, RD. Negele and T. Ewringmann. 1991. Morphological effects of acute and chronic atrazine exposure in rainbow trout (<i>Oncorhynchus mykiss</i>). Arch. Environ. Contam. Toxicol. 20:454-461.
45202908	Görge, G. and R. Nagel. 1990. Toxicity of Lindane, Atrazine, and Deltamethrin to early life stages of zebrafish (<i>Brachydanio rerio</i>). Ecotoxicol. Environ. Safety 20:246-255.
45202909	Grande, M., S. Andersen & D. Berge. 1994. Effects of pesticides on fish: Experimental and field studies. Norwegian J. Agr. Sci., Suppl. 13:195-209.
45202910	Howe, G. E., R. Gillis and R. C. Mowbray. 1998. Effect of chemical synergy and larval stage on the toxicity of atrazine and alachlor to amphibian larvae. Environ. Toxicol. Chem. 17(3):519-525.
45202911	Hussein, S. Y., M. A. El-Nasser and S. M. Ahmed. 1996. Comparative studies on the effects of herbicide atrazine on freshwater fish <i>Oreochromis niloticus</i> and <i>Chrysichthyes auratus</i> at Assiut, Egypt. Bull. Environ. Contam. Toxicol. 57:503-510.
45202912	Kettle, W. D., F. DeNoyelles, Jr., B. D. Heacock and A. M. Kadoum. 1987. Diet and reproductive success of bluegill recovered from experimental ponds treated with atrazine. Bull. Environ. Contam. Toxicol. 38:47-52.
45202913	Neskovic, N. K., I. Elezovic, V. Karan, V. Poleksic and M. Budimir. 1993. Acute and subacute toxicity of atrazine to carp (<i>Cyprinus carpio</i> L.). Ecotoxicol. Environ. Safety 25:173-182.
45202914	Saglio, P. and S. Trijasse. 1998. Behavioral responses to atrazine and diuron in

	goldfish. Arch. Environ. Contam. Toxicol. 35:484-491.		
45202915	Schober, U. and W. Lampert. 1977. Effects of sublethal concentrations of the herbicide Atrazin ^R on growth and reproduction of <i>Daphnia pulex</i> . Bull. Environ. Contam. & Toxicol. 17(3):269-277.		
45202916	Streit, B., and H. M. Peter. 1978. Long-term effects of atrazine to selected freshwater invertebrates. Arch. Hydrobiol. Suppl. 55:62-77.		
45202917	Taylor, E. J., S. J. Maund and D. Pascoe. 1991. Toxicity of four common pollutants to the freshwater macroinvertebrates <i>Chironomus riparius</i> Meigen (Insecta: Diptera) and <i>Gammarus pulex</i> (L.) (Crustacea: Amphipoda). Arch. Environ. Contam. Toxicol. 21:371-376.		
45202918	Thursby, G. B., D. Champlin and W. Berry. 1990. Acute toxicity of atrazine to copepods. (Memorandum to D. J. Hansen, US. EPA, Narragansett Lab., RI., September 16.).		
45202919	Walker, C. R. 1964. Simazine and other <i>s</i> -triazine compounds as aquatic herbicides in fish habitats. Weeds 12(2):134-139.		
45202920 45204902	 Ward, G. S. and L. Ballantine. 1985. Acute and chronic toxicity of atrazine to estuarine fauna. Estuaries 8:22-27. (Estuaries 8(1):22-27. Biagianti-Risbourg, S. and J. Bastide. 1995. Hepatic perturbations induced by herbicide (atrazine) in gray mullet <i>Liza ramada</i> (Mugilidae, Teleostei): An ultrastructural study. Aquat. Toxicol. 31:217-229. 		
45204903	Freemark, K. E. and C. Boutin. 1994. Impacts of agricultural herbicide use on terrestrial wildlife: A review with special reference to Canada. Canadian Wildl. Serv., Tech. Rep. Ser. 196.		
45204904	Gluth, G. and W. Hanke. 1985. A comparison of physiological changes in carp <i>Cyprinus carpio</i> , induced by several pollutants at sublethal concentrations: The dependency on exposure time. Ecotoxicol. Environ. Safety 9:179-188.		
45204905	Grobler, E., J. H. J. van Vurin and H. H. du Preez. 1989. Routine oxygen consumption of <i>Talapia sparrmanii</i> (Cichlidae) following acute exposure to atrazine. Comp. Biochem. Physiol. 93C(1):37-42.		
45204906	Moore, A. and C. P. Waring. 1998. Mechanistic effects of a triazine pesticide on reproductive endocrine function in mature male Atlantic salmon (<i>Salmo salar</i> L.) parr. Pest. Biochem. Physiol. 62:41-50.		
45204907	Prasad, T. A. V. and D. C. Reddy. 1994. Atrazine toxicity on hydromineral balance of fish, <i>Tilapia mossambicus</i> . Ecotoxicol. Environ. Safety 28:313-316. (

45204908	Prasad, T. A. V., T. Srinivas, G. Md. Rafi and C. D. Reddy. 1991. Effect <i>in vivo</i> of atrazine on haematology and O_2 consumption in fish, <i>Talapia mossambica</i> . Biochem. Internat. 23(1):157-161.
45204909	Srinivas, T., T. A. V. Prasad, G. Md. Raffi and D. C. Reddy. 1991. Effect of atrazine on some aspects of lipid metabolism in fresh water fish. Biochem. Internat. 23(3):603-609.
45204910	Steinberg, C. E. W., R. Lorenz and O. H. Spieser. 1995. Effects of atrazine on swimming behavior of zebrafish, <i>Bachydanio rerio</i> . Water Research 29(3):981-985.
45205101	Mitchell, C. A. 1987. Growth of <i>Halodule wrightii</i> in culture and the effects of cropping, light, salinity and atrazine. Aquatic Botany 28:25-37.
45205102	Huckins, J. N. J. D. Petty and D. C. England. 1986. Distribution and impact of trifluralin, atrazine, and fonofos residues in microcosms simulating a northern prairie wetland. Chemosphere 15(5):563-588.
45205103	Best, L. B., K. E. Freemark, J. J. Dinsmore and M. Camp. 1995. A review and synthesis of habitat use by breeding birds in Agricultural Landscapes of Iowa. Amer. Midl. Nat. 124:1-29.
45205104	Stallman, Heidi R. and Louis B. Best. 1996. Bird use of an experimental strip intercropping system in northeast Iowa. J. Wildl. Manage. 60(2):354-362.
45205105	Morrison, Michael L. and E. Charles Meslow. 1984. Response of avian communities to herbicide-induced vegetation changes. J. Wildl. Manage. 48(1):14-22.
45205106	Marrs, R. H., C. T. Williams, A. J. Frost & R. A. Plant. 1989. Assessment of the effects of herbicide spray drift on a range of plant species of conservation interest. Environ. Poll. 59:71-86.
45205107	Lorz, H. W., S. W. Glenn, R. H. Williams, C. M. Kunkel, L. A. Norris and B. R. Loper. 1979. Effects of selected herbicides on smolting of coho salmon. US. EPA, Office of Res. Devel., Environ. Res. Lab., Corvallis, OR. EPA-600/3-79-071. 102 p.
45208302	Birge, W. J., J. A. Black and R. A. Kuehne. 1980. Effects of organic compounds on amphibian reproduction. University of Kentucky, Water Resour. Res. Inst., Res. Rep. 121. 39 p. (USDI, Agreement Numbers: 14-34-0001-7038 (FY 1977), 14-34-0001-8019 (FY 1978), and 14-34-0001-9091 (FY 1979).
45208303	Hall, L. W., Jr., M. C. Ziegenfuss, R. D. Anderson, T. D. Spittler and H. C. Leichtweis. 1994. Influence of salinity on atrazine toxicity to a Chesapeake Bay copepod (<i>Eurytemora affinis</i>) and fish (<i>Cyprinodon variegatus</i>). Estuaries

17:181-186.

- 45208304 Whale, G. F., D. A. Sheahan and M. F. Kirby. 1994. Assessment of the value of including recovery periods in chronic toxicity test guidelines for rainbow trout (*Onchorhynchus mykiss*), p. 175-187. *In*: R. Muller and R. Lloyd (ed.). Sublethal and chronic effects of pollutants on freshwater fish. Fishing News Books, London, U.K.
- 45208305 Oris, J. T., R. W. Winner and M. V. Moore. 1991. A four-day survival and reproduction toxicity test for *Ceriodphnia dubia*. Environ. Toxicol. Chem. 10:217-224.
- 45208308 McNamara, P. C. 1991. Atrazine technical Acute toxicity to the marine copepod (*Acartia tonsa*) under flow-through conditions. SLI Rep. No. 91-2-3662. Springborn Laboratories, Inc. Wareham, MA.
- 45208309 Jop, K. M. 1991. (Atrazine technical) Acute toxicity to (*Ceriodaphnia dubia*) under static conditions. SLI Report No. 91-1-3629. Springborn Laboratories, Inc., Wareham, MA.
- 45209601 Hertl, P.; Cheung, M.; Ross, R. (2000) Response to EPA Questions Concerning the Regression Analysis of Atrazine and its Major Degradation Products (EPA MRID 45145601): Lab Project Number: 1171-00. Unpublished study prepared by Novartis Crop Protection. 34 p.
- 45227701 Baird, Donald J., Ian Barber, Amadeu M. V. M. Soares and Peter Calow. 1991. An early life-stage test with *Daphnia magna* Straus: An alternative to the 21-day chronic test Ecotox. and Environ. Safety 22:1-7.
- 45227702 Belden, J. B. and M. J. Lydy. 2000. Impact of atrazine on organophosphate insecticide toxicity. Environ. Toxicol. Chem. 19(9):2266-2274.
- 45227704 Davis, D. E. 1980. Effects of herbicides on submerged seed plants. Auburn Univ., Dept. Botany, Plant Pathol. Microbio., USDI, Project A-067-ALA (Oct. 1, 1978 to Sept. 30, 1980. 19 p.
- 45227705 Delistraty, D. and C. Hershner. 1984. Effects of the herbicide atrazine on adenine nucleotide levels in *Zostera marina* L. (eelgrass). Aquatic Botany 18:353-369.
- 45227706 Dewey, S. L. 1986. Effects of the herbicide atrazine on aquatic insect community structure and emergence. Ecology 67(1):148-162. (MRID #).
- 45227707 El-Sheekh, M. M., H. M. Kotkat and O. H. E. Hammouda. 1994. Effect of Atrazine herbicide on growth, photosynthesis, protein synthesis, and fatty acid composition in the unicellular green alga *Clorella kessleri*. Ecotox. Environ.

Safety 29:3490358.

45227708 Fairchild, J. F., D. S. Ruessler and A. R. Carlson. 1998. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor. Environ. Toxicol. Chem. 17(9):1830-1834. (MRID #). 45227709 Gonzalez-Murua, C., A. Munoz-Rueda, F. Hernando and M. Sanchez-Diaz. 1985. Effect of atrazine and methabenzthiazuron on oxygen evolution and cell growth of Chlorella pyrenoidosa. Weed Research 25:61-66. 45227710 Grenier, G., L. Proteau, J.-P. Marier and G. Beaumont. 1987. Effects of a sublethal concentration of atrazine on the chlorophyll and lipid composition of chlorophyll-protein complexes of Lemna minor. Plant Physiol. Biochem. 25(4):409-413. 45227711 Hall, L. W., Jr., M. C. Ziegenfuss and R. D. Anderson. 1993. An assessment of salinity effects on the toxicity of atrazine to Chesapeake Bay species: Data needs for development of estuarine aquatic life criteria. Final report. Univ. of Maryland, Maryland Agr. Exper. Sta., Wye Res. Educ. Center. 28 p. 45227712 Hartman, W. and D. B. Martin. 1985. Effects of four agricultural pesticides on Daphnia pulex, Lemna minor, and Potamogeton pectinatus. Bull. Environ. Contam. Toxicol. 35:646-651. Hersh, C. M. and W. G. Crumpton. 1987. Determination of growth rate 45227713 depression of some green algae by atrazine. Bull. Environ. Contam. Toxicol. 39:1041-1048. 45227714 Hofmann, A. and S. Winkler. 1990. Effects of atrazine in environmentally relevant concentrations on submersed macrophytes. Arch. Hydrobiol. 118(1):69-79. 45227715 Hopkin, R. and J. M. Kain. 1978. The effects of some pollutants on the survival, growth and respiration of Laminaria hyperborea. Estuarine Coast. Mar. Sci. 7:531-553. 45227716 Hurlbert, S. H. 1975. Secondary effects of pesticides on aquatic ecosystems. Residue Rev. 57:81-148 45227718 Jones, T. W., W. M. Kemp, P. S. Estes and J. C. Stevenson. 1986. Atrazine uptake, photosynthetic inhibition, and short-term recovery for the submersed vascular plant, Potamogeton perfoliatus L. Arch. Environ. Contam. Toxicol. 15:277-283. 45227719 Jones, T. W. and L. Winchell. 1984. Uptake and photosynthetic inhibition by

	atrazine and its degradation products on four species of submerged vascular plants. J. Environ. Qual. 13(2):243-247.
45227720	Kemp, W. M., W. R. Boynton, J. J. Cunningham, J. C. Stevenson, T. W. Jones and J. C. Means. 1985. Effects of atrazine and linuron on photosynthesis and growth of the macrophytes, <i>Potamogeton perfoliatus</i> L. and <i>Myriophyllum spicatum</i> L. in an estuarine environment. Mar. Environ. Res. 16:255-280.
45227721	Mayer, P., J. Frickmann, E. R. Christensen and N. Nyholm. 1998. Influence of growth conditions of the results obtained in algal toxicity tests. Environ. Toxicol. Chem. 17(6):1091-1098.
45227722	Moragua, D. and A. Tauguy. 2000. Genetic indicators of herbicide stress in the Pacific oyster <i>Crassostrea gigas</i> under experimental conditions. Environ. Toxicol. Chem. 19(3):706-711.
45227723	Neckles, H. A. 1992. Indicator development: Seagrass monitoring and research in the Gulf of Mexico. Report of Workshop at Mote Marine Laboratory, Sarasota, FL., January 28-29, 1992. US EPA, Off. Res. Devel., Environ. Res. Lab., Gulf Breeze, FL. EPA/620/R-94/029. 64 p.
45227724	Nelson, K. J., K. D. Hoagland and B. D. Siegfried. 1999. Chronic effects of atrazine on tolerance of a benthic diatom. Environ. Toxicol. Chem. 18(5):1038-1045.
45227725	Pereira, W. E., J. L. Domagalski, F. D. Hostettler, L. R. Brown and J. B. Rapp. 1996. Occurrence and accumulation of pesticides and organic contaminants in river sediment, water and clam tissues from the San Joaquin River and tributaries, California. Environ. Toxicol. Chem. 15(2):172-180.
45227726	Peterson, H. G., C. Boutin, P. A. Martin, K. E. Freemark, N. J. Ruecker and M. J. Moody. 1994. Aquatic phyto-toxicity of 23 pesticides applied at expected environmental concentrations. Aquatic Toxicol. 28:275-292.
45227727	Plumley, F. G., D. E. Davis, J. T. McEnerney and J. W. Everest. 1980. Effects of a photosynthesis inhibitor, atrazine, on the salt-marsh fiddler crab, <i>Uca pugnax</i> (Smith). Estuaries 3(3):217-223.
45227728	Portmann, J. E. 1972. Results of acute toxicity tests with marine organisms, using a standard method, 212-217. Mar. Poll. Sea Life.
45227729	Schwarzschild, A. C., W. G. MacIntyre, K. A. Moore and E. L. Libelo. 1994. <i>Zostera marina</i> L. growth response to atrazine in root-rhizome and whole plant exposure exposure experiments. J. Exper. Mar. Biol. Ecol. 183:77-89.

45227731	Walsh, G. E. 1983. Cell death and inhibition of population growth of marine unicellular algae by pesticides. Aquatic Toxicol. 3:209-214.
45253401	Tierney, D.; Christensen, B.; Dando, C. et al. (2000) Human Exposure to Atrazine and Simazine via Ground and Surface Drinking Water: Update VI: Final Report: Lab Project Number: 00800:696-95. Unpublished study prepared by En-Fate, LLC. 3422 p.
45277002	US Geological Survey (1998) Herbicides in rainfall across the midwestern and northeastern United States, 1990-91. USGS Fact Sheet FS-181-97:1-4.
45277003	Capel, P.; Lin, M.; Wotzka, J. (1994) Pesticides in Rain in Minnesota, 1991-1993: An Interim Report (includes addendum dated Sept, 1994). Unpublished study prepared by University of Minnesota. 33 p.
45299501	Giddings, J.; Anderson, T.; Hall, L. et al. (2000) Aquatic Ecological Risk Assessment of Atrazine -A Tiered, Probabilistic Approach. A Report of an Expert Panel: Lab Project Number 709-00. Unpublished study prepared by Novartis Crop Protection. 449 p.
45299504	Madsen, T. J. 2000. Effects of atrazine on the sex ratio of <i>Daphnia pulicaria</i> . Prepared by ABC Laboratories, Inc., Columbia, MO, ABC Study No. 45810; submitted by Novartis Crop Protection, Inc., Greensboro, NC.
45299505	Burnett, G.; Balu, K.; Barton, H. et al. (2000) Summary of Environmental Fate of Atrazine: Lab Project Number: 1213-99. Unpublished study prepared by Novartis Crop Protection, Inc. 68 p.
45399901	Kahrs, R. (2001) AtrazineCorn Supporting Data for Amending Tolerances: Lab Project Number: 827-99. Unpublished study prepared by Syngenta Crop Protection, Inc. 41 p. {OPPTS 860.1500}
45399902	Kahrs, R. (2001) AtrazineSorghum Supporting Data for Amending Tolerances: Lab Project Number: 826-99. Unpublished study prepared by Syngenta Crop Protection, Inc. 29 p.
45399904	Bray, L.; Beidler, W.; Szarka, A. (2001) Atrazine: Chronic Dietary Exposure Assessment for Atrazine and the Simazine Metabolites Common to Atrazine: Lab Project Number: 1256-00. Unpublished study prepared by Syngenta Crop Protection, Inc. 160 p.
45399905	Rosenheck, L. (2001) Atrazine Impregnation of Bulk Dry Fertilizer and Mixing Atrazine with Liquid Bulk Fertilizer: A Description of the Processes and Occupational Risk Assessment: Lab Project Number: 1273-01. Unpublished study

	prepared by Syngenta Crop Protection, Inc. 71 p.
45399906	Cheung, M.; Yokley, R.; Ross, R. et al. (2001) Syngenta/Community Water System Ground Water Monitoring Study for Atrazine and its Major Degradation Products in Multiple States in the United States: Lab Project Number: 758-00. Unpublished study prepared by Syngenta Crop Protection, Inc. 806 p.
45471001	Holden, L.; Sielken, R. (2001) Comparison of the LH Surge in Female Rats Administered Atrazine, Simazine, or DACT for Six Months: Statistical Analysis of the LH Surge: Final Report: Lab Project Number: 6117-399: 2214-01. Unpublished study prepared by Sielken and Associates Consulting, Inc. 49 p.
45471002	Minnema, D. 2001a. Comparison of the LH Surge in Female Rats Administered Atrazine, Simazine, and Diaminochlorotriazine (DACT) via Oral Gavage for One Month. Covance Laboratories, Vienna, VA. Laboratory report number: 6117-398, March 21, 2001.
45475101	Tierney, D.; Christensen, B. (2001) Atrazine and Total Chloro-triazine (TCT) Concentrations from Community Water Systems (CWS) on Surface Water in 31 Atrazine Major Use States from 1993 through 1999: Final Report: Lab Project Number: 1264-99: 00104. Unpublished study prepared by Syngenta Crop Protection and En-fate, LLC. 12 p.
45475102	Tierney, D.; Christensen, B. (2001) Atrazine and Total Chloro-triazine (TCT) Concentrations for Raw and Finished Water from Community Water Systems (CWS) on Surface Water that Participated in the Syngenta Voluntary Monitoring Programs, 1993-2000: Final Report: Lab Project Number: 1265-99: 00103. Unpublished study prepared by Syngenta Crop Protection and En-fate, LLC. 18 p.
45503101	Sielken, R.; Valdez-Flores, C. (2001) Probabilistic Assessment of Drinking Water and Dietary Exposure Combined: Atrazine: Final Report: Lab Project Number: 2214-01. Unpublished study prepared by Sielken & Associates Consulting, Inc. 379 p.
45503102	Barraj, L.; Walls, C. (2001) Total Chlorotriazine Probabilistic Water Assessment Using Calendex: Lab Project Number: 01-01: 2314-01. Unpublished study prepared by Novigen Sciences, Inc. 84 p.
45517301	Rosenheck, L. (2001) Atrazine Use in Southern Turf: Additional Information For Residential Turf Risk Assessments: Lab Project Number: 1143-01. Unpublished study prepared by Syngenta Crop Protection, Inc. 46 p.
45518401	Delzell, E.; Grizzle, W.; Cheng, H. et al. 2001. A Follow-Up Study of Cancer

	Incidence Among Workers in Triazine-Related Operations at the Novartis St. Gabriel Plant: Final Report: Lab Project Number: 2207-01. Unpublished study prepared by University of Alabama at Birmingham. 170 p.
45520101	Minnema, D. 2001b. Pilot Study for the Evaluation of the LH Surge in Female Rats Exposed to Propazine, Atrazine, Cyanazine, and Diaminochlorotriazine (DACT). Covance Laboratories, Vienna, VA. Laboratory report number: 6641- 107. August 23, 2001.
45545301	Burnett, D. (1992) Response to the EPA Request for Additional Information for the Aqueous Photolysis of (Carbon 14)-Atrazine Under Natural and Artificial Light: Lab Project Number: 534-92. Unpublished study prepared by Syngenta Crop Protection, Inc. 17 p.
45545302	Gross, T. S. 2001. Determination of potential effects of 10 day neonatal exposure of atrazine on histological and hormonal sex determination in incubated American alligator (<i>Alligator mississippiensis</i>) eggs. Prepared by University of Florida, Wildlife Reproductive Toxicology Laboratory, Gainesville, FL, NOVA98,02a; submitted by Syngenta Crop Protection, Inc., Greensboro, NC.
45545303	Gross, T. S. 2001. Determination of potential effects of 10 day neonatal exposure of atrazine on histological and hormonal sex determination in incubated red-eared slider (Pseudemys elegans) eggs. Prepared by University of Florida, Wildlife Reproductive Toxicology Laboratory, Gainesville, FL, NOVA98,02b; submitted by Syngenta Crop Protection, Inc., Greensboro, NC.
45545304	Yokley, R. (2001) Re-Sampling of Domestic Rural Drinking Water Wells: Atrazine: Final Report: Lab Project Number: 1697-01. Unpublished study prepared by Syngenta Crop Protection, Inc. 61 p.
45545305	Cheung, M. (1995) Storage Stability of Atrazine, G-30033, G-28279 and G-28273 In Water Under Refrigerator Storage Conditions: Atrazine: Final Report: Lab Project Number: ABR-94094: 105-91. Unpublished study prepared by Ciba Crop Protection, Inc. 86 p. {OPPTS 860.1380}
45545306	Chen, W.; Wong, A. (2001) Trend of Atrazine Concentrations Monitored in Ohio Lake Erie Tributary Drainage Basins and Community Water Systems (CWS) on Surface Water of Six States: Final Report: Lab Project Number: 1662-01. Unpublished study prepared by Syngenta Crop Protection, Inc. 39 p.

	45599702	Brooks, R.; Crouse, K.; Drewing, L. et al. (1995) Benefits/Alternatives Summary for Atrazine and Simazine. Unpublished study prepared by Ciba Crop Protection. 28 p.
	45599703	Parshley, T. (1995) Farming Trends and Practices: Atrazine and Simazine. Unpublished study prepared by Ciba Crop Protection. 188 p.
	45599704	Parshley, T. (1995) Sustainable Agriculture: The Potential of Non-Chemical Weed Control Methods as Substitutes for Herbicides in U.S. Corn Production. Unpublished study prepared by Ciba Crop Protection. 68 p.
	45599705	Parshley, T. (1995) Environmental Benefits of Atrazine and Simazine. Unpublished study prepared by Ciba Crop Protection. 185 p.
ENJ	45599706	Parshley, T. (1995) The Role of Atrazine and Simazine in Weed Resistance Management. Unpublished study prepared by Ciba Crop Protection. 143 p.
IVE DOCUMENT	45599707	Parshley, T. (1995) Economic Evaluations: Lost Benefits from Atrazine or Triazine Herbicide Cancellations (U.S.Impact). Unpublished study prepared by Ciba Crop Protection. 60 p.
20	45599708	Parshley, T. (1995) Economic Review of Past Atrazine and Triazine Herbicide Assessments. Unpublished study prepared by Ciba Crop Protection. 564 p.
IVE	45599709	Parshley, T. (1995) Comparative Analysis of Alternatives in Corn. Unpublished study prepared by Ciba Crop Protection. 1056 p.
		Parshley, T. (1996) Comparative Analysis of Alternatives in Sorghum. Unpublished study prepared by Ciba Crop Protection. 459 p.
US EPA ARCH	45599711	Parshley, T. (1995) Benefits of Atrazine in Ecofallow. Unpublished study prepared by Ciba Crop Protection. 613 p.
EP	45599712	Parshley, T. (1995) Benefits of Atrazine and Simazine in Turf and Ornamental Nurseries. Unpublished study prepared by Ciba Crop Protection. 165 p.
SN	45599713	Parshley, T. (1995) Benefits of Atrazine and Simazine in Conifers. Unpublished
		228

study prepared by Ciba Crop Protection. 286 p.

- Giddings, J.; Anderson, T.; Hall, L. et al. (2002) Supplement to "Aquatic Ecological Risk Assessment of Atrazine -A Tiered, Probabilistic Approach."
 Including Responses to EPA Comments: Final Report: Lab Project Number: 709-00 Unpublished study prepared by Syngenta Crop Protection. 293 p.
- 45622303 Burnett, G.; Chen, W.; Francis, P. (2002) Response to the EPA Document Entitled "Review of Atrazine PRA": Lab Project Number: 1274-02. Unpublished study prepared by Syngenta Crop Protection, Inc. 67 p.
- 45622304 Wieser, C. M. and T. Gross. 2002. Determination of potential effects of 20 day exposure of atrazine on endocrine function in adult largemouth bass (*Micropterus salmoides*). Prepared by University of Florida, Wildlife Reproductive Toxicology Laboratory, Gainesville, FL, Wildlife No. NOVA98.02e; submitted by Syngenta Crop Protection, Inc., Greensboro, NC.
- 45622305 Tierney, D.; Marut, K.; Dando, C.; et al. (2001) Exposure Analysis of Atrazine and Simazine in Community Water Systems in 32 Use States, 1993-2000: Update VII: Final Report: Lab Project Number: 1629-00: 00023. Unpublished Study prepared by En Fate, LLC. 3881 p.
- 45622306 Sielken, R.; Valdez-Flores, C. (2002) Probabilistic Assessment of Drinking Water and Exposure Combined Using Water Concentration Data Between 1993 and 2001: Final Report: Lab Project Number: 1305-02. Unpublished study prepared by Sielken & Associates Consulting, Inc. 259 p.
- 45622307 Sielken, R.; Valdez-Flores, C. (2002) Analysis of Time Trends in Total Chlorotriazine Residue Concentrations in Finished Water in Twenty Eight Community Water Supply Systems Between 1993 and 2001: Final Report: Lab Project Number: 1292-02. Unpublished study prepared by Sielken & Associates Consulting, Inc. 163 p.
- 45622308 Riggs, M.; McMichael, B.; Clayton, A.; et al. (2002) Long-Term (1994-2000) Trend Analysis of Atrazine Concentrations from 127 Midwestern Water Bodies: Lab Project Number: 07779.002: 2694-01. Unpublished study prepared by Research Triangle Institute. 41 p.

45622309	Minnema, D. (2002) 52-Week Toxicity Study of Simazine, Atrazine, and DACT Administered in the Diet to Female Rats: Lab Project Number: 6117-399: 2214- 01. Unpublished study prepared by Covance Laboratories Inc. 1199 p.
45622310	Rosenheck, L. (2002) Determination of Dermal Transfer Efficiency of Granular Atrazine Residues From Turf to Dry and Wetted Palms: Final Report: Lab Project Number: 1841-01. Unpublished study prepared by Central California Research Laboratories, Inc. 217 p.
45622311	Rosenheck, L. (2002) Children's Residential Exposure and Risk Assessment to Atrazine Treated Turf Using Hand Press Transfer Efficiency: Lab Project Number: 1255-02. Unpublished study prepared by Syngenta Crop Protection, Inc. 23 p.
45629401	Walls, C.; Scrafford, C.; Barraj, L. (2002) Probabilistic Assessment of Drinking Water and Dietary Exposure Combined Using Calendex Based on Water Concentration Data Between 1993 and 2001: (Chlorotriazine): Lab Project Number: 02-01: 1365-02. Unpublished study prepared by Novigen Sciences, Inc. 298 p
45629402	Sielken, R.; Holden, L. (2002) Comparison of the LH Surge in Female Rats Administered Atrazine, Simazine, or DACT for Six Months: Statistical Analysis of the LH Surge: Supplemental Analysis: Final Report: Lab Project Number: 6117-399: 2214-01. Unpublished study prepared by Sielken & Associates Consulting, Inc. 42 p.
45711302	Breckenridge, C.; Stevens, J.; Pastoor, T. (2002) The Selection of Endpoints, Application of FQPA Uncertainty Factors and Risk Extrapolation at the 99.9th Percentile: Atrazine: Lab Project Number: 1776-02. Unpublished study prepared by Syngenta Crop Protection, Inc. 21 p.
45711304	Hertl, P. (2002) Occurrence of Atrazine in Community Water Systems on Groundwater and Rural Wells in High Atrazine Use Areas: Final Report: Lab Project Number: 1778-02. Unpublished study prepared by Syngenta Crop Protection, Inc. 58 p.
45711305	Breckenridge, C.; Hertl, P. (2002) An Analysis of the Trends in Atrazine Concentration in Raw and Finished Drinking Water in High Atrazine Use Areas: Lab Project Number: 1777-02. Unpublished study prepared by Syngenta Crop Protection, Inc. 43 p.
45711306	Sielken, R.; Valdez-Flores, C. (2002) Analysis of Time Trends in Total Chlorotriazine Residue Concentration in Finished Water in Twenty Eight Community Water Supply Systems Between 1993 and 2001: Final Report

	Amendment: Lab Project Number: 1292-02. Unpublished study prepared by Sielken and Associates Consulting, Inc. 41 p.
45711307	Sielken, R.; Valdez-Flores, C. (2002) Effect of Time Trends in Total Chlorotriazine Residue Concentrations on the Probabilistic Assessment of Drinking Water and Dietary Exposure Combined Using Water Concentration Data Between 1993 and 2001: Amendment 2: Final Report: Lab Project Number: 1292-02. Unpublished study prepared by Sielken and Associates Consulting, Inc. 68 p.
45711308	Scrafford, C.; Barraj, D. (2002) Probabilistic Assessment of Exposure to Total Chlorotriazines in Drinking Water Using Calendex: 11 Additional Sites: Lab Project Number: 02-02: 1757-02. Unpublished study prepared by Exponent, Inc. 127 p.
45722401	Ashby, J.; Tinwell, H. (2002) The Effects of Atrazine on the Sexual Maturation of Female Alderley Park-Wistar and Sprague-Dawley Rats: Final Report: Lab Project Number: 1775-02. Unpublished study prepared by Central Toxicology Laboratory. 32 p.
45722700	Acetochlor Registration Partnership (2002) Submission of Environmental Fate Data in Support of the Registration of Acetochlor. Transmittal of 1 Study.
45728401	van Wesenbeeck, I.; Guzman, N.; Fuhrman, J.; et al. (2002) State Ground Water Monitoring Program for Acetochlor and Other Corn HerbicidesPart 9: Final Study Report: Lab Project Number: ARP-GWM-02: 852-577: ACET-95-GW-02. Unpublished study prepared by LFR Levine-Fricke and Monsanto. 121 p.
45730200	Acetochlor Registration Partnership (2002) Submission of Environmental Fate Data in Support of Acetochlor. Transmittal of 1 Study.
45824501	Breckenridge, C.; Hertl, P.; Chen, W.; et al. (2002) A Statistical-Based Rationale for Identifying Vulnerable Community Water Systems (CWSs) Delivering Drinking Water Derived from Surface Water: Atrazine: Draft Report: Lab Project Number: 2204-02. Unpublished study prepared by Syngenta Crop Protection, Inc and Sielken & Associates Consulting, Inc. 195 p.
45904001	Putt, A. (2002) Atrazine Technical SFToxicity to Midge (Chironomus tentans) Under Flow-Through Conditions: Final Report: Lab Project Number: 1781-6635: 1500-02. Unpublished study prepared by Springborn Smithers Laboratories. 58 p. {OPPTS 850.1735}
45904002	Putt, A. (2003) Atrazine Technical SFToxicity to Midge (Chironomus tentans) During a 10-Day Sediment Exposure: Final Report: Lab Project Number: 1781- 6636: 1501-02. Unpublished study prepared by Springborn Smithers

Laboratories. 79 p. {OPPTS 850.1735}

- 45904003 Chen, W. (2002) Comparison of 90-Day Rolling Averages to Annual Means of Quarterly Sampled Data--A Monte Carlo Simulation: Atrazine: Lab Project Number: 2203-02. Unpublished study prepared by Syngenta Crop Protection, Inc. 42 p.
- 45904004 Wiliams, W.; Briscoe, V.; Pugsley, R.; et al. (2003) Magnitude, Duration, and Temporal Occurrence Frequency of Atrazine Residues in North American Waters: Atrazine: Final Report: Lab Project Number: WEI 936.30: 1745-02: 936-30. Unpublished study prepared by Waterborne Environmental, Inc. 275 p.

Citations Not Identified by a MRID Number

Anna, K., L. Themistoklis and B. Georgia. 1997. Toxicity of the herbicide atrazine, two of its degradation products and the herbicide metolachor on photosynthetic microorganisms. Fresenius Environ. Bull. 6(9-10):502-508.

Abou-Waly, Hoda, M. M. Abou-Setta, H. N. Nigg and L. L. Mallory. 1991. Growth response of freshwater algae, *Anabaena flos-aquae* and *Selenastrum capricornutum* to Atrazine and hexazinone herbicides. Bull. Environ. Contam. Toxicol. 46:223-229.

Adami H, Colditz G, Mandel J, Trichopoulos D. 2002. An evaluation of the report by Dr. Delzell et al., 2001 on "A follow-up study of cancer incidence among workers in triazine operations at the Novartis St. Gabriel plant". July 2002.

Adgate, J., et al. Measurement of Children's Exposure to Pesticides: Analysis of Urinary Metabolite Levels in a Probability-Based Sample. Environmental Health Perspectives, June 2001. pp 583-590.

Aldercreutz H, Gorbach SL, Goldin BR, Woods MN, Dwyer JT, and Harnalaninen E Estrogen metabolism and excretion in oriental and Caucasian women. J. Nat. Cancer Inst. 86:1076-1082. 1994

Allen, R. Review of five atrazine epidemiology published articles for SAP. DP Barcode D262405. January 14, 2000. US EPA.

Alavanja MCR, Samanic C, Dosemeci M, et al. 2003. Use of agricultural pesticides and prostate cancer risk in the Agricultural Health Study cohort. *Am J Epidemiol* 157:800-814.

Armstrong, D. E., C. Chester and R. F. Harris 1967. Atrazine hydrolysis in soil. Soil Sci. Soc. Amer. Proc. 31:61-66.

Baier, C. H., K. Hurle and J. Kirchhoff. 1985. Datensammlung zur Abschätzung des Gefährdungspotentials von Pflanzenschutzmitteln-Wirkstoffen für Gewässer. Deutscher Verband für Wasserwirtschaft und Kulturbau e. V., Verlag Paul Parey, Hamburg and Berlin, pp. 74-294.

Baker, D. B. 1987. Lake Eire Agro-Ecosystem Program: Sediment, nutrient, and pesticide export studies. US EPA, Great Lakes National Program Office, Chicago, IL.

Baker, D. B., K. A. Kieger, R. P. Richards and J. W. Kramer. 1985. Effects of intensive agricultural land use on regional water quality in northwestern Ohio, p. 201-207. *In*: US EPA. Perspectives on nonpoint source pollution, proceedings of a national conference, Kansas City,

MO. EPA-440/5-85-001.

Baker, D. B., K. A. Krieger and J. V. Setzler. 1981. The concentrations and transport of pesticides in northwestern Ohio rivers – 1981. US Army Corps of Engineers, Tech. Rep. Series, No. 19, Buffalo District, Buffalo, NY.

Bakke, J., Robbins, J., and Feil, V. 1967. Metabolism of 2-chloro-4, 6-bis(isopropylamino)-s-triazine (propazine) and 2-methoxy-4, 4-bis(isopropylamino)-2-triazine (prometone) in the rat. Balance study and urinary metabolite separation. J. Agric. Food Chem. 15: 628-631.

Bakke, J. Larson, J.D., and Price, C.E. 1972. Metabolism of atrazine and 2-hydroxyatrazine by the rat. J. Agric. Food Chem. 20: 602-607.

Barriuso, E., R. Calvet and S. Houot. 1995. Field study of the effect of sewage sludge application on atrazine behaviour in soil. Internat. J. Environ. Anal. Chem. 59(2-4):107-123.

Basta, N. T., R. L Huhnke and J. H. Stiegler. 1997. Atrazine runoff from conservation tillage systems: A simulated rainfall study. J. Soil Water Conserv. 52(1):44-49.

Beynon, K. I., G. Stoydin and A. N. Wright. 1972. A comparison of the breakdown of the triazine herbicides cyanazine, atrazine and simazine in soils and in maize. Pestic. Biochem. Physiol. 2:153-161.

Blondell, J., and Spann, M. Review of Atrazine Incident Reports. DP Barcode D270014. October 31, 2000. US EPA.

Bogdanffy, M.S., O'Connor, J., Hansen, J.F., Gaddamidi, V., Van Pelt, S., Green, J., and Cook, J.C. 2000. Chronic toxicity and oncogenicity bioassay in rats with the chloro-s-triazine herbicide cyanazine. J Toxicol Environ Health. 60: 567-586.

Bond, C. E. 1966. Progress report on aquatic weed research. Projects 773 and 294. Dept. Fish. Wildlife, Oreg. Agr. Exp. Sta., Oreg. State Univ.

Borisover, M. D. and E. R. Graber. 1997. Competitive sorption between atrazine and other organic compounds in soils and model sorbents. Comment. Environ. Sci. Technol. 31(5):1577-1578. [Xing, B. S., J. J. Pignatello and B. Gigliotti. 1997. Response. Environ. Sci. Technol. 31(5):1578-1580.

Boundy-Mills, K. L., M. L. deSouza, R. T. Mandelbaum, L. P. Wackett, and M. J. Sadowsky. 1997. The ATZB gene of *Pseudomonas* sp. strain ADP encodes the second enzyme of a novel atrazine degradation pathway. Appl. Environ. Microbiol. 63(3):916- .

Bouquard, C., J. Quazzani, J. C. Prome, Y. Michel-Briand and P. Plesiat. 1997. Dechlorination

of atrazine by a *Rhizobium* sp. isolate. Appl. Environ. Microbiol. 63(3):862-916.

Bradlow, H.l., Davis, D.L., Lin, g., Sepkovic, D. and Tiwari, R. 1995. Effects of pesticides on the ratio of 16"/2-hydroxy estrone: a biologic marker of breast cancer risk. *Environ.*. *Health Persp.*: Vol 103, Supplement 7: 147-150.

Bradway, D. E., and Moseman R. F. 1982. Determination of urinary residue levels of the N-dealkyl metabolites of triazine herbicides. J. Agric. Food Chem. 30: 244-247.

Braun, F., W. Schűssler and R. Wehrle. 1987. Organische Schadstoffe, Polychlorbiphenyle (PCB) und Pestizide im Kreislauf des Wassers. Bilanzierung und Bewertung. Report of the Bavarian Water Research Institute, Munich, pp. 18-27.

Breckenridge CB. 2002. Summary of information on potential atrazine exposure for 12 out of 17 prostate cancer cases reported by Delzell et al. 2001. Nov. 1, 2002. [Confidential report not available to public]

Breckenridge C. Jan. 16th and 17th, 2003. St. Gabriel Workforce: male Syngenta Employees excluding contract manufacturers. Two Emails to Jerry Blondell with Attached Table.

Brooke, L. 1990. University of Wisconsin-Superior, Superior, WI. (Memorandum to R. L. Spehar, US. EPA, Duluth, MN. January 30).

Brown LM, Blair A, Gibson R, et al. 1990. Pesticide exposures and other agricultural risk factors for leukemia among men in Iowa and Minnesota. *Cancer Research* 50:6585-6591.

Brown LM, Burmeister LF Everett GD, et al. 1993. Pesticide exposures and multiple myeloma in Iowa men. *Cancer Causes Control* 4:153-156.

Buchholz, B. A., Fultz, E., Haack, K. W., Vogel, J. S., Gilman, S. D., Gee, S. J., Hammock, B. D., Hui, X., Wester, R. C., and Maibach, H. I. 1999. HPLC-accelerator MS measurement of atrazine metabolites in human urine after dermal exposure. Anal. Chem. 71: 3519-3525.

Burken, J. G. and J. L. Schnoor. 1997. Uptake and metabolism of atrazine by popular trees. Environ. Sci. Technol. 31(5):1399-1407.

Burrell, R. E., W. E. Inniss and C. I. Mayfield. 1985. Detection and analysis of interactions between atrazine and sodium pentachlorophenate with single and multiple algal-bacterial populations. Arch. Environ. Contam. Toxicol. 14:167-176.

Butler, G. L., T. R. Deason and J. C. O'Kelley. 1975. The effect of atrazine, 2, 4-D, methoxychlor, carbaryl and diazinon on the growth of planktonic algae. Br. Phycol. J. 10:371-376.

Cantor KP, Blair A, Everett G, et al. 1992. Pesticides and other agricultural risk factors for non-Hodgkin's lymphoma among men in Iowa and Minnesota. *Cancer Research* 52:2447-2455.

Capel, P. D., M. Lin and P. J. Wotzka. 1994. Pesticides in rains in Minnesota 1991-1993: An interim report. Minnesota Dept. Agr., Agronomy Serv. Div., p. 26. (Additional pages on 1994 data).

Carney, E. C. 1983. The effects of atrazine and grass carp on freshwater communities. Thesis Univ. of Kansas, Lawrence, Kansas, USA.

Caux, Pierre-Yves, Lucie Menard, and Robert A. Kent. 1996. Comparative study of the effects of MCPA, butylate, atrazine, and cyanazine on *Selenastrum capricornutum*. Environ. Poll. 92(2):219-225.

Celis, R., J. Cornejo, M. C. Hermosin and W. C. Koskinen. 1997. Sorption-desorption of atrazine and simazine by model soil colloidal components. Soil Sci. Soc. Amer. J. 61(2):436-444.

Chen, W. and R. J. Wagenet. 1997. Description of atrazine transport in soil with heterogeneous nonequilibrium sorption. Soil Sci. Soc. Amer. J. 61(2):360-372.

Clothier, J.M. 1999. Dermal Transfer Efficiency of Pesticides from Turf Grass to Dry and Wetted Palms. Prepared for U.S. EPA, National Exposure Research Laboratory, Research Triangle Park, N.C.

Close, M. E., L. Pang, J. P. C. Watt and K. W. Vincent. 1998. Leaching of picloram, atrazine and simazine through two New Zealand soils. Geoderma 84(1-3):45-65.

Cohen B, Wiles R, and Bondoc, E. 1995. Weed Killers by the Glass. August, 1995. Submitted by Environmental Working Group.

Cohen, S. 1997. Atrazine in Wisconsin ground water: An evaluation of management control. Ground water Monit. Remed. 17(3):60-63.

Conner, K., Howell, J., Chen, I., Liu, H., Berhane, K., Sciarretta, C., Safe, S., and Zacharewski, T. 1996. Failure of chloro-S-triazine-derived compounds to induce estrogen receptor-mediated responses in vivo and in vitro MRID 43934403. Fundam. Appl. Toxicol. 30, 93-101.

Cook, J. 1989. Ninety-Day Feeding Study with INL5300-20: Effect on Estrous Cycle. Haskell Laboratory, Report No. 112-89: Medical Research Project No. 8435-001. MRID 41181901.

Cooper, R. L., Parrish, M. B., McElroy, W. K., Rehnberg, G. L., Hein, J. F., Goldman, J. M., Stoker, T. E. and Tyrey, T. E. 1995. Effect of atrazine on the hormonal control of the ovary.

The Toxicologist 15(1): 294.

Cooper, R. L., Stoker, T. E., Goldman, J. M., Hein, J. F., and Tyrey, L. 1996. Atrazine disrupts hypothalamic control of pituitary-ovarian function. The Toxicologist 30: 66.

Cooper, R.L., Stoker, T.E., Goldman, J.M., Parrish, M.B., Tyrey, L. (1996) Effect of atrazine on ovarian function in the rat. Reprod Toxicol 1996 Jul-Aug;10(4):257-64.

Cooper, R.L., Stoker, T.E., McElroy, W.K., and Hein, J. 1998. Atrazine (ATR) disrupts hypothalamic catecholamines and pituitary function. *The Toxicologist*. 42:160.

Cooper, R.L., Stoker, T.E., Tyrey, L., Goldman, J.M., and McElroy, W.K. 2000. Atrazine disrupts the hypothalamic control of pituitary-ovarian function. *Tox. Sci.* 53: 297-307

Cooper, R.L. Unpublished data. The Effects of Propazine on LH surge in Female Rats. US EPA/NHEERL/RTD

Correll, D. L., J. W. Pierce and T. L. Wu. 1978. Herbicides and submerged plants in Chesapeake Bay, p. 858-877. *In*: Proc. Symp. Tech., Environ. Socioecon. And Regul. Aspects Coastal Zone Manag., ASCE, San Francisco, Calif.

Crain, D. A., L. J., Guillette, Jr., A. A. Rooney and D. B. Pickford. 1997. Alterations in steroidogenesis in alligators (*Alligator mississippiensis*) exposed to naturally and experimentally to environmental contaminants. Environ. Health Perspectives 105(5):528-533.

Crosignani P, Berrino F. 1994. Re: "Role of the herbicide atrazine in the development of non_Hodgkin's lymphoma" by S Hoar Zahm, DD Weisburger, KP Kantor, FF Holmes, A Blair. *Scand J Work Environ Health*. 1993;19:108-14. *Scand J Work Environ Health* 20:223-226.

Crosignani P, Donna A, Berrino F. 1990. Authors reply. Scand J Work Environ Health.16:446-447.

Cummings, A. M., Rhodes, B.E., and Cooper, R.L. 2000. Effect of Atrazine on Implantation and Early Pregnancy in Four Strains of Rats. *Tox. Sci.* Nov. 58: 135-143.

Das, P.C., McElroy, W.K., Cooper, R.L. 2000. Differential modulation of catecholamines by chlorotriazine herbicides in pheochromocytoma (PC12) cells in vitro. Tox. Sci. Aug; 56(2): 324-31.

Dao, T. H., T. L. Lavy and R. C. Sorenson. 1979. Atrazine degradation and residue distribution in soil. Soil Sci. Soc. Amer. J. 43:1129-1134.

Davis, D. E., J. D. Weete, C. G. P. Pillai, F. G. Plumley, J. T. McEnerney, J. W. Everest, B. Truelove and A. M. Diner. 1979. Atrazine fate and effects in a salt marsh. U.S. Environmental Protection Agency EPA-600/3-79-111. 84 p.

Davis DL, Bradlow LH, Wolff M, Woodruff T, Hoel DG, and Anton-Culver H. 1993. Medical Hypothesis: Xenoestrogens as preventable causes of breast cancer. Environ. Health Perspect. 101:372-277.

Day, G. M., B. T. Hart, I. D. McKelvie and R. Beckett. 1997. Influence of natural organic matter on the sorption of biocides onto goethite. 1. gamma-BHC and atrazine. Environ. Tech. 18(8):769-781.

DiCorcia, A., C. Crescenzi, E. Guerriero and R. Samperi. 1997. Ultratrace determination of atrazine and its six major degradation products in water by solid-phase extraction and liquid chromatography electrospray mass spectrometry. Environ. Sci. Technol. 31(6):1658-1664.

Dodson, S. I., C. M. Merritt, J. Shannahan, and C. M. Shults. 1999. Low exposure concentrations of atrazine increase male production in *Daphnia pulicaria*. Environ. Toxicol. Chem. 18(7):1568-1573.

Donna A, Crosignani P, Robutti F, et al. 1989. Triazine herbicides and ovarian epithelial neoplasms. *Scan J Work Environ Health* 15:47-53.

Donna A, Crosignani P, Robutti F, et al. 1989. Triazine herbicides and ovarian epithelial neoplasms. *Scan J Work Environ Health* 15:47-53.

Doulia, D., A. Hourdakis, F. Rigas and E. Anagnostopoulos. 1997. Removal of atrazine from water by use of nonionic polymeric resins. J. Environ. Sci. Health A-Environ. 32(9-10):2635-2657.

Douset, S., C. Mouvet and M. Schiavon. 1997. Degradation of [C-14] terbuthylazine and [C-14] atrazine in laboratory soil microcosms. Pest. Sci. 49(1):9-17.

Dowdy, D. L. and T. E. McKone. 1997. Predicting plant uptake of organic chemicals from soil or air using octanol/water and octanol/air partition ratios and a molecular connectivity index. Environ. Toxicol. Chem. 16(12):2448-2456.

El Jay, A. 1996. Effects of organic solvents and solvent-atrazine interactions on two algae, *Chorella vulgaris* and *Selenastrum capricornutum*. Arch. Environ. Contam. Toxicol. 31(1):84-91.

Eldridge, J.C., Wetzel, L.T., Stevens, J.T., Simpins, J.W. 1999. The mammary tumor response in triazine-treated female rats: A threshold-mediated interaction with strain and species-specific

reproductive senescence. Steroids 64:672-678.

Farooqui, M. A., A. V. Rao, T. Jayasree and A. Sadanandam. 1997. Induction of atrazine resistance and somatic embryogensis in *Solanum melongena*. Theor. Appl. Genet. 95(4):702-706.

Fawley, M. W. 1984. Effects of light intensity and temperature interactions on growth characteristics of *Phaeodactylum tricornutum* (Bacillariophyceae). J. Phycol. 20:67-72.

Fischer-Scherl, T., A. Veeser, R. W. Hoffmann, C. Kűhnhauser, R.-D. Negele and T. Ewringmann. 1991. Morphological effects of acute and chronic atrazine exposure in rain bow trout (*Oncorhynchus mykiss*). Arch. Environ. Contam. Toxicol. 20:454-461.

Forget, J., J. F. Pavillon, M. R. Menasria, and G. Bocquene. Ecotox. Environ. Safety 40(3):239-

Frank, R., H. E. Braun, M. V. Holdrinet, G. J. Sirons and B. D. Ripley. 1982. Agriculture and water quality in the Canadian Great Lakes Basin. V. Pesticide use in 11 agricultural watersheds and presence in stream water 1975-1977. J. Environ. Qual. 11:497-505.

Frank, R. and G. J. Sirons. 1979. Atrazine: Its use in corn production and its loss to stream waters in southern Ontario, 1975-1977. Sci. Total Environ. 12:223-239.

Frank, R., G. J. Sirons, R. L. Thomas and K. McMillan. 1979. Triazine residues in suspended solids (1974-1976) and water (1977) from the mouths of Canadian streams flowing into the Great Lakes. J. Great Lakes Res. 5:131-138.

Frear, D. E. H. and J. E. Boyd. 1967. Use of *Daphnia magna* for the microbioassay of pesticides. I. Development of standardized techniques for rearing *Daphnia* and preparation of dosage-mortality curves for pesticides. J. Econ. Entomol. 60(5):1228-1236. (MRID # 00002875).

Fremanich, K. J., W. L. Bland, B. Lowery and K McSweeney. 1996. Irrigation and tillage effects on atrazine and metabolite leaching from a sandy soil. J. Environ. Qual. 25(6):1291-1300.

Gaggi, C., G. Sbrilli, A. M. H. El Naby, M. Bucci, M. Duccini and E. Bacci. 1995. Toxicity and hazard ranking of s-triazine herbicides using Microtox, two green algal species and a marine crustacean. Environ. Toxicol. Chem. 14(6):1065-1071.

Gascon, J., G. Durand and D. Barcelo. 1995. Pilot survey for atrazine and total chlorotriazines in estuarine waters using magnetic particle based immunoassay and gas chromatography nitrogen/phosphorus detection. Environ. Sci. Technol. 29(6):1151-1557.

Gaynor, J. D., D. C. MacTavish and W. I. Findlay. 1995. Organic chemicals in the environment: Atrazine and metolachlor loss in surface and subsurface runoff from three tillage treatments in corn. J. Environ. Qual. 24:246-256.

Gaynor, J. D., D. C. MacTavish and A. B. Labaj. 1998. Atrazine and metolachlor residues in Brookston CL following conventional and conservation tillage culture. Chemosphere 36(15):3199-3211.

Gianturco, F., C. M. Chiodaroli, I. R. Bellobono, M. L. Raimondi, A. Moroni and B. Gawlik. 1997. Pilot-plant photomineralization of atrazine in aqueous solution, by photocatalytic membranes immobilising titanium dioxide and promoting photocatalysts. Fresenius Environ. Bull. 6(7-8):461-469.

Giddings, J. M. and L. W. Hall, Jr. 1998. The aquatic ecotoxicology of triazine herbicides. Amer. Chem. Soc. Symp. Ser. 683:347-356.

Gilliom, R. J., J. E. Barbash, D. W. Kolpin and S. J. Larson. 1999. Testing water quality for pesticide pollution. Environ. Sci. Technol. 33:164-169.

Gimenez-Espinosa, R., E. Romera, M. Tena and R. DePrado. 1996. Fate of atrazine in treated and pristine accessions of three *Setaria* species. Pest. Biochem. Physiol. 56(3):196-208.

Glotfelty, D. E., A. W. Taylor, A. R. Isensee, J. Jersey and S. Glenn. 1984. Atrazine and simazine movement to Wye River estuary. J. Environ. Qual. 13:115-121.

Gruessner, B. 1994. Patterns of herbicide contamination in Vermont streams and the effect of atrazine on communities of stream organisms. M. S. Thesis, Univ. Vermont, Burlington, VT, USA.

Guasch, H., N. Ivorra, V. Lehmann, M. Paulsson, M. Real and S. Sabater. 1998. Community composition and sensitivity of periphyton to atrazine in flowing waters: The role of environmental factors. J. Appl. Phycology 10(2):203-215.

Guasch, H., I. Munoz, N. Roses and S. Sabater. 1997. Changes in atrazine toxicity throughout sucession of stream periphyton communities. J. Appl. Phycology 9(2):137-147.

Hall, J. K., M. Pawlus and E. R. Higgins. 1972. Losses of atrazine in runoff water and soil sediment. J. Environ. Qual. 1:172-176.

Hall, J. K. 1974. Erosional losses of s-triazine herbicides. J. Environ. Qual. 3:174-180.

Hall, L. W., Jr. and R. D. Anderson. 1991. A review of estuarine aquatic toxicity data for the development of aquatic life criteria for atrazine in Chesapeake Bay. Maryland Dept. of Environ.,

Baltimore, Maryland. 60 p.

Hall, L. W., Jr., M. C. Ziegenfuss, and R. D. Anderson. 1994. The influence of salinity on the chronic toxicity of atrazine to an estuarine copepod: Filling a data need for development of an estuarine chronic criterion. Report. Wye Research and Education Center, University of Maryland, Queenstown, MD.

Hall, L. W., Jr., M. C. Ziegenfuss, R. D. Anderson and D. P. Tierney. 1995. The influence of salinity on the chronic toxicity of atrazine to an estuarine copepod: Implications for development of an estuarine chronic criterion. Arch. Environ. Contam. Toxicol. 28:344-348.

Hannan, Patrick J. 1995. A novel detection scheme for herbicidal residues. Environ. Toxicol. Chem. 14(5):775-780.

Hanioka, N., Jinno, H., Tanaka-Kagawa, T., Nishimura, T., and Ando, M. 1999. In vitro metabolism of chlorotriazines: characterization of simazine, atrazine, and propazine metabolism using liver microsomes from rats treated with various cytochrome P450 inducers. Toxicol. Appl. Pharmacol. 156: 195-205.

Hapeman, C. J., J. S. Karns and D. R. Shelton. 1995. Total mineralization of aqueous atrazine in the presence of ammonium nitrate using ozone and *Klebsiella terragena* (strain DRS-1): Mechanistic considerations for pilot scale disposal. J. Agr. Food Chem. 43(5):1383-1392.

Harris, C. I. 1967. Fate of 2-chloro-<u>s</u>-triazine herbicides in soil. J. Agric. Food Chem. 15(1):157-162. Also In: Unpublished submission received July 17, 1978 under 100-541; submitted by Ciba-Geigy Corp., Greensboro, NC.

Hayar, S., C. Munier-Lamy, T. Chone and M. Schiavon. 1997. Physico-chemical versus microbial release of C-14-atrazine bound residues from a loamy clay soil incubated in laboratory microcosms. Chemosphere 34(12):2683-2699.

Hequet, V., C. Gonzalez and P. LeCloirec. 1997. Methodological approach for the hydrolysis degradation of atrazine. Intern. J. Environ. Anal. Chem. 66(4):253-269.

Hoar SK, Blair A, Holmes FF, et al. 1986. Agricultural herbicide use and risk of lymphoma and soft-tissue sarcoma. *JAMA*. 256:1141-7.

Hoar SK, Blair A, Holmes FF, et al. 1985. Herbicides and colon cancer. Lancet. 1(8440):1277-8.

Hopenhayn-Rich C, Stump ML, Browning SR. 2002. Regional assessment of atrazine exposure and incidence of breast and ovarian cancers in Kentucky. *Arch Environ Contam Toxicol* 42:127-136.

Hörmann, W. D., J. C. Tournayre and H. Egli. 1979. Triazine herbicides residues in central European streams. Pest. Monit. J. 13:128-131.

Horswell, J., A. Hodge and K. Killham. 1997. Influence of plant carbon on the mineralisation of atrazine residues in soils. Chemophere 34(8):1739-1753.

Hottenstein, C. S., F. M. Rubio, D. P. Herzog, J. R. Fleeker and T. S. Lawruk. 1996. Determination of trace atrazine levels in water by a sensitive magnetic particle-based enzyme immunoassay. J. Agr. Food Chem. 44(11):3576.

Isensee, A. R. 1976. Variability of aquatic model ecosystem-derived data. Internat. J. Environ. Stud. 10:35-41.

Isensee, A. R. and A. M. Sadeghi. 1997. Interactions of tillage and rainfall on atrazine leaching under field and laboratory conditions. Chemosphere 34(12):2715-2725.

Issa, S., M. Wood, L. Pussemier, V. Vanderheyden, C. Douka, S. Vizantinopoulos, Z. Gyori, M. Borbely and J. Katai. 1997. Potentail dissipation of atrazine in the soil unsaturated zone: A comparative study in four European counties. 50(2):99-104.

Jenks, B. M., F. W. Roeth and A. R. Martin. 1997. Comparison of an enzyme immunoassay with gas chromatography for atrazine determination in water and soil. Bull. Environ. Contam. Toxicol. 58(5):696-704.

Johnson, R. M. and A. B. Pepperman. 1998. Release of atrazine and alachor from clay-oxamide controlled-release formulations. Pesticide Sci. 53(3):233-241.

Johnson, R. M., A. B. Pepperman and H. M. Selim. 1998. Field mobility and persistence of alginate controlled release formulations of atrazine. Soil Sci. 163(1):46-53.

Jones, R. O. 1962. Tolerance of the fry of common warm-water fishes to some chemicals employed in fish culture, 436-445. Proc. 16th Ann. Conf. Southeast. Assoc. Game Fish Comm.

Jones, T. W., W. M. Kemp, P. S. Estes and J. C. Stevenson. 1982a. Atrazine uptake, phytotoxicity, release, and short-term recovery for the submersed aquatic plant, *Potamogeton perfoliatus*. Report to U.S. Environmental Protection Agency, Annapolis. NTIS, Springfield, VA.

Jones, T. W., W. M. Kemp, J. C. Stevenson and J. C. Means. 1982b. Degradation of atrazine in estuarine water/sediment systems and soils. J. Environ. Qual. 11:632-638.

Jop, K. M. 1991. (Atrazine technical) - Acute toxicity to (*Ceriodaphnia dubia*) under static conditions. SLI Report No. 91-2-3665. Springborn Laboratories, Inc., Wareham, MA.

Jop, K. M. 1991. (Atrazine technical) - Acute toxicity to fathead minnow (*Pimephales promelas*) under static conditions. SLI Report No. 91-1-3630. Springborn Laboratories, Inc., Wareham, MA.

Jop, K. M. 1991. (Atrazine technical) - Acute toxicity to fathead minnow (*Pimephales promelas*) under static conditions. SLI Report No. 91-2-3666. Springborn Laboratories, Inc., Wareham, MA.

Juracek, K. E. and E. M. Thurman. 1997. Assessing aquifer contamination risk using immunoassay: Trace analysis of atrazine in unsaturated zone sediments. J. Environ. Qual. 26(4):1080-1090.

Kadoum, A. M. and D. E. Mock. 1978. Herbicide and insecticide residues in tailwater pits: Water and pit bottom soil from irrigated corn and sorghum fields. J. Agric. Food Chem. 26:45-50.

Kanwar, R. S., J. L. Baker and P. Singh. 1997. Use of chloride and fluorescent dye as tracers in measuring nitrate and atrazine transport through soil profile under laboratory conditions. J. Environ. Sci. Health Part A. 32(7):1907-1921.

Kaushik, N. K., K. R. Solomon, G. Stephenson and K. Day. 1985. Assessment of sublethal effects of atrazine on zooplankton. Canada Tech. Rep. Fish. Aquat. Sci. 1368:377-379.

Keck, G., C. Bostvironnois and E. Braquet. 1991. Veterinary toxicology of a model-herbicide: Atrazine. Rev. Med. Vet. 142(6):481-489.

Kelleher T and Pinto K. Ohio EPA Pesticide Special Study: First Year Summary. May 10, 1996.

Kemp, W. M., J. C. Means, T. W. Jones and J. C. Stevenson. 1982. Herbicides in the Chesapeake Bay and their effect on submerged aquatic vegetation, p. 503-567. *In*: Chesapeake Bay Program, Tech. studies, a synthesis. Part IV. US EPA, Washington, DC.

Kettles MA, Browning SR, Prince TS, Horstman SW. 1997. Triazine herbicide exposure and breast cancer incidence: an ecologic study of Kentucky counties. *Environmental Health Perspectives* 105:1222-1227.

Khan, S. U. and P. B. Marriage. 1977. Residues of atrazine and its metabolites in an orchard soil and their uptake by oat plants. J. Agric. Food Chem. 25:1408-1413.

Khan, S. U. and W. J. Saidak. 1981. Residues of atrazine and its metabolites after prolonged usage. Weed Res. 21(1):9-13.

Klassen, H. E. and A. M. Kadoum. 1979. Distribution and retention of atrazine and carbofuran in farm pond ecosystems. Arch. Environ. Contam. Toxicol. 8:345-353.

Kolpin, D. W. and S. J. Kalkoff. 1993. Atrazine degradation in a small stream in Iowa. Environ. Sci. Technol. 27:134-139.

Korte, F. and H. Greim. 1981. Überprüfung der Durchführbarkeit von Prüfungsvorschriften und der Aussagekraft der Grundprüfung des Ersten Chemikaliengestzes. Bericht der GSF München, Institut für ökologische Chemie und Institut für Biochemie und Toxikologie, Abteilung Toxikologie. An das Umweltbundesamt Berlin, Forschungsbericht Nr. 107 04 006/1.

Kruger, E. L., B. L. Zhu and J. R. Coats. 1996. Relative mobilities of atrazine, five atrazine degradates, metolachlor, and simazine in soils of Iowa. Environ. Toxicolog. Chem. 15(5):691-696.

Kumar, A., R. S. Kanwar and L. R. Ahuja. 1998. Evaluation of preferential flow component of RZWQM in simulating water and atrazine transport to subsurface drains. Trans. ASAE 41(3):627-639.

Laws, S.C., Ferrell, J.M., Stoker, T.E., Schmid, J., and Cooper, R.L. (2000). The effect of atrazine on puberty in female wistar rats: an evaluation in the protocol for the assessment of pubuertal development and thyroid function. *Tox. Sci.* In Press.

Laws, S.C., Ferrell, J.M., Stoker, T.E., Cooper, R.L. 2002. Pubertal Development in Female Wistar Rats Following Exposure to Propazine and Atrazine Metabolites, Diamino-S-Chlorotriazine and Hydroxyatrazine. Abstract. Society of Toxicology 2002.

Li, J. H., C. H. Langford and D. S. Gamble. 1996. Atrazine sorption by a mineral soil: Effects of soil size fractions and temperature. J. Agr. Food Chem. 44(11):3680-3685.

Li, J. H., C. H. Langford and D. S. Gamble. 1996. Atrazine sorption by a mineral soil: Processes of labile and nonlabile uptake. J. Agr. Food Chem. 44(11):3672-3680.

Liang, T. T. and E. P. Lichtenstein. 1975. Synergism of insecticides by herbicides: Effect of environmental factors. Science

Lorber, M., K. Johnson, B. Kross, P. Pinsky, L. Burmeister, M. Thurman, A. Wilkins and G. Hallberg. 1997. A study of the temporal variability of atrazine in private well water. 1. Study design, implementation, and database development. Environ. Monit. Assess. 47(2):175-197.

Ma, L. W. and H. M. Selim. 1997. Evaluation of nonequilibrium models for predicting atrazine transport in soils. Soil Sci. Soc. Amner. J. 61(5):1299-1308.

MacIntosh, D., Needham, L., Hammerstrom, K., et al. A Longitudinal Investigation of Selected Pesticide Metabolites in Urine. Journal of Exposure Analysis and Environmental Epidemiology, September/October 1999. pp 494-501.

MacLennan PA, Delzell E, Sathiakumar N, et al. 2002. Cancer incidence among triazine herbicide manufacturing workers. *J Occup Environ Med.* 44:1048-1058.

MacLennan PA, Delzell E, Sathiakumar N, et al. 2003. Mortality among triazine herbicide manufacturing workers. *J Toxicol Environ Health A* 66(6):501-517.

Marchini, S., L. Passerini, D. Cesareo and M. L. Tosato. 1988. Herbicidal trazines: Acute toxicity on *Daphnia*, fish, and plants and analysis of its relationships with structural factors. Ecotoxicol. Environ. Safety 16:148-157.

Masse, L., N. K. Patni, P. Y. Jui and B. S. Clegg. 1998. Groundwater quality under conventional and no tillage: II. Atrazine, deethylatrazine, and metolachlor. J. Environ. Qual. 27(4):877-884.

Matthem, R., S. Nelson and S. U. Khan. 1996. Transformation products distribution of atrazine in corn plants treated with radiolabelled herbicide. Chemosphere 33(12):2395-2403.

Mayasich, J. M., E. P. Karlander and D. E. Terlizzi, Jr. 1986. Growth responses of *Nannochloris oculata* Droop and *Phaeodactylum tricornutum* Bohlin to the herbicide atrazine as influenced by light intensity and temperature. Aquatic Toxicol. 8:175-184.

Mayasich, J. M., E. P. Karlander and D. E. Terlizzi, Jr. 1987. Growth responses of *Nannochloris oculata* Droop and *Phaeodactylum tricornutum* Bohlin to the herbicide atrazine as influenced by light intensity and temperature in unialgal and bialgal assemblage. Aquatic Toxicol. 8:175-184.

McDougal A, Wilson C, and Safe S. Induction of estradiol 2-hydroxylase activity in MCF-7 human breast cancer cell by pesticides and carcinogens. Environ. Toxicol. Pharmacol. 3: 195-199. 1997

McDougal A, and Safe S Induction of 16alpha-/2-hydroxy estrone metabolite ratios in MCF-7 cells by pesticides, carcinogens and antiestrogens does not predict mammary carcinogens Environ Health Perspect. 106:203-206. 1998

Mills PK. 1998. Correlation analysis of pesticide use data and cancer incidence rates in California counties. *Arch Environ Health*. 53:410-3.

Minnema, D. 2002. 52-week Toxicity Study of Simazine, Atrazine, and DACT Administered in the Diet to Female Rats. Covance Laboratories, Vienna, VA. Laboratory report number: 6117-399. Draft Report.

US EPA ARCHIVE DOCUMENT

Moody, J. A. and D. A. Goolsby. 1993. Spatial variability of triazine herbicides in the lower Mississippi River. Environ. Sci. Technol. 27:2120-2126.

Moreau, C. and C. Mouvet. 1997. Sorption and desorption of atrazine, deethylatrazine, and hydroxyatrazine by soil and aquifer solids. J. Environ. Qual. 26(2):416-424.

Moreau-Kervevan, C. and C. Mouvet. 1998. Adsorption and desorption of atrazine, deethylatrazine, and hydroxyatrazine by soil components. J. Environ. Qual. 27(1):46-54.

Mouvet, C., L. Amalric, S. Broussard, G. Lang, A. Brecht and G. Gauglitz. 1996. Reflectometric interference spectroscopy for the determination of atrazine in natural water samples. Environ. Sci. Technol. 30(6):1846-1852.

Muir, D. C. G., J. Y. Yoo and B. E. Baker. 1978. Residues of atrazine and n-deethylated atrazine in water from five agricultural watersheds in Quebec. Arch. Environ. Contam. Toxicol. 7:221-235.

Nandi, S., Guzman, R. C., and Yang, J. 1995. Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis. *PNAS*: 25;92(9) 3650-7.

Narotsky M. G., Best, D.S., Guidici, D. L., and Cooper, R.L. (2000). Strain comparisons of atrazine-induced pregnancy loss in the rat. *Repro Toxicol.* In Press.

Narotsky, M. G., Best, D. S., Guidici, D. L., and Cooper, R. L. 2001. Strain comparisons of atrazine-induced pregnancy loss in the rat. Reprod. Toxicol. 15, 61-69.

Narotsky, M. G., Best, D. S., Bielmeier, S. R., Spangler, S.A., and Cooper, R. L. 2002. Pregnancy Loss and Delayed Parturition Caused by Atrazine and its Metabolites in F344 Rats. Abstract. Society for the Study of Reproduction.

Natural Resources Defense Council. 2003. Comments on the Atrazine IRED. May 5, 2003.

Ng, H. Y. F. and S. B. Clegg. 1997. Atrazine and metolachlor losses in runoff events from an agricultural watershed: The importance of runoff components. Sci. Total Environ. 193(3):215-229.

Noblet, J. A., L. A. Smith and I. H. Suffet. 1996. Influence of natural dissolved organic matter, temperature, and mixing on the abiotic hydrolysis of triazine and organophosphate pesticides. J. Agr. Food Chem. 44(1):3685-3694.

Novak, J. M., T. B. Moorman and C. A. Cambardella. 1997. Atrazine sorption at the field scale in relation to soils and landscape position. J. Environ. Qual. 26(5):1271-1277.

Nsabimana, E., J. Bohatier, A. Belan, D. Pepin and L. Charles. 1996. Effects of the herbicide atrazine on the activated sludge process: Microbiology and functional views. Chemosphere 33(3):479-495.

O'Kelly, J. C and T. R. Deason. 1976. Degradation of pesticides by algae. US EPA, Athens, GA. EPA-600/3-76-022. 41 pp.

Pape-Lindstrom, Pamela A. and Michael J. Lydy. 1997. Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model. Environ. Toxicol. Chem. 16(11):2415-2420.

Papilloud, S., W. Haerdi, S. Chiron and D. Barcelo. 1996. Supercritical fluid extraction of atrazine and polar metabolites from sediments followed by confirmation with LC-MS. Environ. Sci. Technol. 30(6):1822-1827.

Parshley, Thomas J. 1990. Letter: Atrazine technical, EPA Reg. No. 100-529: Additional information on adsorption/ desorption data: Soil series names. 3 p. Submitted by Ciba-Geigy Corp., Greensboro, NC.

Parshley, T. Report of Potential Adverse Effects of Atrazine. FIFRA Section 6(a)(2) Letter from Tom Parshley to Office of Pesticide Programs, September 14, 2001.

Petit, F., Le Goff, J. Cravedi, Y. Valotaire and F. Pakdel. 1997. Two complementary bioassays for screening the estrogenic potency of xenobiotics: Recombinant yeast for trout estrogen receptor and trout hepatocyte cultures. J. Molecul. Endocrinol. 19:321-335.

Pinsky, P., M. Lorber, M., K. Johnson, B. Kross, L. Burmeister, A. Wilkins and G. Hallberg. 1997. A study of the temporal variability of atrazine in private well water. 2. Analysis of data. Environ. Monit. Assess. 47(2):197- .

Pinter, A., Torek, G., Borzonyi, M., Surjan, A., Csik, M., Kelecsenyi, Z., and Kocsis, Z. 1990. Long-term carcinogenicity bioassay of the herbicide atrazine in F-344 rats. *Neoplasma:* 37(5): 533-544

Putam, A. R. and D. Penner. 1974. Pesticide interactions in higher plants. Pesticide Rev. 50:73-110.

Raveton, M., P. Ravanel, A. M. Serre, F. Nurit and M. Tissut. 1997. Kinetics of uptake and metabolism of atrazine in model plant systems. Pestic. Sci. 49(1):157-164.

Reimer, G. J., S. J. Gee and B. D. Hammock. 1998. Comparison of a time-resolved fluorescence immunoassay and an enzyme-linked immunosorbent assay for the analysis of atrazine in water. J. Agr. Food Chem. 46(8):3353-3359.

Richard, J. J., G. A. Junk, M. J. Avery, N. L. Nehring, J. S. Fritz and H. J. Svec. 1975. Residues in water. Pest. Monit. J. 9:117-123.

Ritter, W. F., H. P. Johnson, W. G. Lovely and M. Molnau. 1974. Atrazine, propachlor, and diazinon residues on small agricultural watersheds. Environ. Sci. Technol. 8:37-42.

Ritter, W. F., A. E. M. Chirnside and R. W. Scarborough. 1996. Movement and degradation of triazines, alachlor, and metolachlor in sandy soils. J. Environ. Sci. Health Part A 31(10):2699-2723.

Roberts, G. C., G. J. Sirons, R. Frank and H. E. Collins. 1979. Triazine residuesin awatershed in southwestern Ontario, Canada (1973-1975). J. Great Lakes Res.5:246-255.255.

Roberts, S., P. Vassseur and D. Dive. 1990. Combined ffects between atrazine, copper and pH, on target and non target species. Water res. 24(4):485-491.

Rodriguez, C. J. and J. M. Harkin. 1997. Degradation of atrazine in subsoils, and groundwater mixed with aquifer sediments. Bull. Environ. Contam. Toxicol. 59(5):728-736.

Rogers, H. R., C. D. Watts and I. Johnson. 1996. Comparative predictions of Irgarol 1051 and atrazine fate and toxicity. Environ. Technol. 17(5):553-557.

Rothstein, E., T. S. Steenhuis, J. H. Peverly and L. D. Geohring. 1996. Atrazine fate on a tile drained field in northern New York: A case study. Agr. Water Manag. 31(3):195-205.

Rouchaud, J., F. Gustin, D. Callens and R. Bulcke. 1996. Atrazine soil metabolism in maize fields treated with organic fertilizers. Weed Res. 36(2):105-113.

Russo, J. and Russo, I. 1996. Experimentally induced mammary tumors in rats. *Breast Can. Res. and Treat*.: 39: 7-20.

Sanderson, J.T., Seinen, W., Giesy, J., and van den Berg, M. 2000. 2-Chloro-s-Triazine Herbicides Induce Aromatase (CYP19) Activity in H295R Human Adrenocortical Carcinoma Cells: A Novel Mechanism for Estrogenicity. Toxicol Sci 54: 121-127.

Sanderson, J.T., Letcher, R., Heneweer, M., Giesy, J.P., and van den Berg, M. 2001. Effects of Chloro-s-Triazine Herbicides and Metabolites on Aromatase Activity in Various Human Cell Lines and on Vitellogenin Production in Male Carp Hepatocytes. Environ Health Perspect 109(10): 1027-31.

Schottler, S. P. and S. J. Eisenreich. 1997. Mass balance model to quantify atrazine sources, transformation rates, and trends in the Great Lakes. Environ. Sci. Technol. 31(9):2616-2626.

US EPA ARCHIVE DOCUMENT

Schulz, A., F. Wengenmayer and H. M. Goodman. 1990. Genetic engineering of herbicide resistance in higher plants. Plant Sci. 9:1-15.

Seta, A. K. and A. D. Karathanasis. 1997. Atrazine adsorption by soil colloids and Co-transport through subsurface environments. Soil Sci. Soc. Amer. J. 61(2):612-618.

Seybold, C. A. and W. Mersie. 1996. Adsorption and desorption of atrazine, dethylatrazine, deisopropylatrazine, hydroxyatrazine, and metolachlor in two soils from Virginia. J Environ. Qual. 25(6):1179-1186.

Shabana, E. F. 1987. Use of batch assays to assess the toxicity of atrazine to some selected cyanobacteria: I. Influence of atrazine on the growth, pigmentation and carbohydrate contents of *Aulosira fertilissima, Anabeana oryzae, Nostoc muscorum* and *Tolypothrix tenuis*. J. Basic Microbiol. 27(2):113-119.

Shafer, T.J., Ward, T.R., Meacham, C.A., Cooper, R.L. (1999) Effects of the chlorotriazine herbicide, cyanazine, on GABA(A) receptors in cortical tissue from rat brain. Toxicology 1999 Dec 20;142(1):57-68.

Sheldon, D. R., A. M. Sadeghi, J. S. Karns and C. J. Hapeman. 1995. Effect of wetting and drying of soil on sorption and biodegradation of atrazine. Weed Sci. 43(2):298-306.

Sparling, G., R. Dragten, J. Aislabie and R. Fraser. 1998. Atrazine mineralisation in New Zealand topsoils and subsoils: Influence of edaphic factors and numbers of atrazine-degrading microbes. Australian J. Soil Res. 36(4):557-571.

Sposito, G., L. Martin-Neto and A. Yang. 1996. Atrazine complexation by soil humic acids. J. Environ. Qual. 25(6):1203-1210.

Squillace, P. J., M. R. Burkart and W. W. Simpkins. 1997. Infiltration of atrazine and metabolites from a stream to an alluvial aquifer. J. Amer. Water Resour. Assoc. 33(1):89-97.

Stevenson, J. C. and N. M. Confer. 1978. Summary of available information on Chesapeake Bay submerged vegetation. U.S. Dept. Interior, Fish Wildl. Ser., Off. Biol. Survey. FWS/OBS-78/66. 335 p.

Stevenson, J. C., T. W. Jones, W. M. Kemp, W. R. Boynton and J. C. Means. 1982. An overview of atrazine dynamics in estuarine ecosystems, p. 79-94. *In*: Proceedings of the workshop on agrochemicals and estuarine productivity, Beaufort, North carolina, September 18-19,1980.

Stoker, T. E., Laws, S. C., Guidici, D. L., and Cooper, R. L. 2000. The effect of atrazine on puberty in male Wistar rats: an evaluation in the protocol for the assessment of pubertal
development and thyroid function. Toxicol. Sci. 58, 50-59.

Stoker, T.E., Guidici, D.L., Laws, S.C., and Cooper, R.L. In press. The Effects of Atrazine Metabolites on Puberty and Thyroid Function in the Male Wistar Rat. Toxicol Sci.

Stoker, T. E. Unpublished data. The Effects of Hydroxyatrazine on Puberty in Male Rats. US EPA/NHEERL/RTD.

Takahashi, M., M. Takano, T. Shiraishi, K. Asada and Y. Inoue. 1995. Cooperation of photosynthetic reaction center of photosystem II under weak light as shown by light intensity-dependence of the half-effective dose of atrazine. Biosci. Biotech. Biochem. 59(5):796-809.

Tang, J. X., K. D. Hoagland and B. D. Siegfried. 1997. Differential toxicity of atrazine to selected freshwater algae. Bull. Environ. Contam. Toxicol. 59(4):631-638.

Tasli, S., L. Patty, H. Boetti, P. Ravanel, G. Vachaud, C. Scharff, J. Favre-Bonvin, M. Kaouadji and M. Tissut. 1996. Persistence and leaching of atrazine in corn culture in the experimental site of La Cote Saint Andre (Isere, France). Arch. Environ. Contam. Toxicol. 30(2):203-213.

Thakur, A.K. (1999). Addendum 1 to study no. 2386-108: Chronic (12/24 month) study in rats with atrazine technical (EPA MRID No. 445701). Unaudited draft interim report of the estrous cycle data through week 46. Covance Lab, Vienna VA. Covance Lab No. 2386-108. Novartis Nexus # 810-95. March 12, 1999.

Taylor A G. 1992. Pre-Compliance Date Testing for Pesticides in Illinois' Surface Water Supplies. October 23, 1992.

Thurman, E. M., D. A. Goolsby, M. T. Meyer, M. S. Mills, M. L. Pomes and D. W. Kolpin. 1992. A reconnaissance study of herbicides and their metabolites in surface water of the midwestern United States using immunoassay and gas chromatography/mass spectroscopy. Environ. Sci. Technol. 26:2440-2447.

Thursby, G. B. and M. Tagliabue. 1990. Effect of atrazine on sexual reproduction in the kelp, *Laminaria saccharina*. (Memorandum to D. J. Hansen, US. EPA, Narragansett, RI. September 14.)Timchalk, C., Dryzga, M. D., Langvardt, P. W., Kastl, P. E., and Osborne, D. W. 1990. Determination of the effect of tridiphane on the pharmacokinetics of [14C]-atrazine following oral administration to male Fischer 344 rats. Toxicology 61: 27-40.

Trapp, S., M. Matthies, I. Sceunert and E. M. Topp. 1990. Modeling the bioconcentration of organic chemicals in plants. Environ. Sci. Technol. 24:1246-1252.

Trentacoste, S. V., Friedmann, A. S., Youker, R. T., Breckenridge, C. B., and Zirkin, B. R. 2001. Atrazine effects on testosterone levels and androgen-dependent reproductive organs in

peripubertal male rats. J. Androl. 22, 142-148.

Trochimowicz, H. J., Kennedy, G. L., and Krivanek, N. 1994. Heterocyclic and Miscellaneous Nitrogen Compounds. In Patty's Industrial Hygiene and Toxicology (G. D. Clayton, and F. E. Clayton, Eds.), pp. 3285-3521. John Wiley & Sons, New York.

Tucker, R. K. and D. G. Crabtree. 1970. Handbook of toxicity of pesticides to wildlife. U.S. Dept. Interior, Bureau Sport Fish. Wildlife, Denver Wildlife Res. Center. Submitted by Fison Corp.

Ukeles, R. 196. The effect of temperature on the growth and survival of several marine algal species. Biol. Bull. (Woods Hole, Mass.) 120:255-264.

Ursin G, London S Stanczyk FG, Gentzschein E, Pagannini-Hill A, Ross RK and Pike MC 1999 Urinary 2-hydroxy estrone ratio and risk of breast cancer in postmenopausal women. J. Nat. Cancer Institute 91(12) 1067-1072.

van den Brink, P. J., E. van Donk, R. Gylstra, S. J. H. Crum and T. C. M. Brock. 1995. Effects of chronic low concentrations of the pesticides chlorpyrifos and atrazine in indoor freshwater microcosms. Chemosphere 31(5):3181-3200. (MRID # 45087417).

van der Heyden, V., P. Debongnie and L. Pussemier. 1997. Accelerated degradation and mineralization of atrazine in surface and subsurface oil materials. Pest. Sci. 49(3):237-243.

van der Pas, L. J. T., M. Leistra and J. J. T. I. Boesten. 1998. Rate of transformation of atrazine and benazone in water-saturated sandy subsoils. Pesticide Sci. 53(3):223-233.

Van Zwieten, L. and I. R. Kennedy. 1995. Rapid degradation of atrazine by *Rhodococcus* sp. N186/21 and by an atrazine-perfused soil. J. Agr. Food Chem. 43(5):1377-1383.

Waldron, A. C. 1974. Pesticide movement from cropland into Lake Eire. US EPA, Athens, GA, EPA-660/2-74-03.

Walker, S. R., G. R. Robinson and P. A. Hargreaves. 1997. Weed control with atrazine and chlorsulfuron is determined by herbicide availability and persistence in soils. Australian J. Agr. Res. 48(7):1003-1011.

Walne, P. R. 1970. Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera *Ostrea, Crassostrea, Mercenaria* and *Mytilus*. Fish Invest., London (Series 2) 26:1-62.

Watts, D. W. and J. M. Novak. 1997. Evaluation of atrazine positive and false positive immunoassay detections in ground water. J. Environ. Sci. Heal. Pt. B 32(5):659-673.

Wauchope, R. D. 1978. The pesticide content of surface water draining from agricultural fields – a review. J. Environ. Qual. 7:459-472.

Wetzel, R. G. 1975. Primary production. p. 230-247. *In*: B. A. Whitton (ed.). River ecology. Univ. of Calif. Press, Berkley.

Wilson, R., M. H. Barker, D. J. Schiffrin and R. Abuknesha. 1997. Electrochemiluminescenceflow injection imminoassay for atrazine. Biosen. Bioelect. 12(4):277-287.

Wu, T. L. 1980. Dissipation of the herbicides atrazine and alachlor in a Maryland corn field. J. Environ. Qual. 9:459-465.

Wu, T. L. 1981. Atrazine residues in estuarine water and the aerial deposition of atrazine into Rhode River, Maryland. Water, Air, Soil Poll. 15:173-184.

Wu, T. L., D. L. Correl and H. E. H. Remenapp. 1983. Herbicide runoff from experimental watersheds. J. Environ. Qual. 12:330-336.

Xing, B. S., J. J. Pignatello and B. Gigliotti. 1996. Competitive sorption between atrazine and other organic compounds in soils and model sorbents. Environ. Sci. Technol. 30:2342. [Correction 1997. 31(8):2442-2443]

Zahm SH, Wisenburger DD, Cantor KP, et al. 1993a. Role of the herbicide atrazine in the development of non-Hodgkin's lymphoma. *Scan J Work Environ Health* 19:108-114. [see Crosignani P, Berrino F. 1994 for comment and additional analyses]

Zahm SH, Weisenburger DD, Saal RC, et al. 1993b. The role of agricultural pesticide use in the development of non-Hodgkin's lymphoma in women. *Arch Environ Health.* 48(5):353-358.

Appendix E: GENERIC DATA CALL-IN

Note that a complete Data Call-In (DCI), with all pertinent instructions, will be sent to registrants under separate cover.

Generic DCI Page 1 of 9

Generic DCI Page 2 of 9

Generic DCI Page 3 of 9

Generic DCI Page 4 of 9

Generic DCI Page 5 of 9

Generic DCI Page 6 of 9

Generic DCI Page 7 of 9

Generic DCI Page 8 of 9

Generic DCI Page 9 of 9

Appendix F: PRODUCT SPECIFIC DATA CALL-IN

Note that a complete Data Call-In (DCI), with all pertinent instructions, will be sent to registrants under separate cover.

Product Specific DCI Page 1 of 7

Product Specific DCI Page 2 of 7

Product Specific DCI Page 3 of 7

Product Specific DCI Page 4 of 7

Product Specific DCI Page 5 of 7

Product Specific DCI Page 6 of 7

Product Specific DCI Page 7 of 7

Appendix G: EPA'S BATCHING OF ATRAZINE PRODUCTS FOR MEETING ACUTE TOXICITY DATA REQUIREMENTS FOR REREGISTRATION

In an effort to reduce the time, resources and number of animals needed to fulfill the acute toxicity data requirements for reregistration of products containing **ATRAZINE** as the active ingredient, the Agency has batched products which can be considered similar for purposes of acute toxicity. Factors considered in the sorting process include each product's active and inert ingredients (identity, percent composition and biological activity), type of formulation (e.g., emulsifiable concentrate, aerosol, wettable powder, granular, etc.), and labeling (e.g., signal word, use classification, precautionary labeling, etc.). Note that the Agency is not describing batched products as "substantially similar" since some products within a batch may not be considered chemically similar or have identical use patterns.

Using available information, batching has been accomplished by the process described in the preceding paragraph. Notwith-standing the batching process, the Agency reserves the right to require, at any time, acute toxicity data for an individual product should the need arise.

Registrants of products within a batch may choose to cooperatively generate, submit or cite a single battery of six acute toxicological studies to represent all the products within that batch. It is the registrants' option to participate in the process with all other registrants, only some of the other registrants, or only their own products within a batch, or to generate all the required acute toxicological studies for each of their own products. If a registrant chooses to generate the data for a batch, he/she must use one of the products within the batch as the test material. If a registrant chooses to rely upon previously submitted acute toxicity data, he/she may do so provided that the data base is complete and valid by today's standards (see acceptance criteria attached), the formulation tested is considered by EPA to be similar for acute toxicity, and the formulation has not been significantly altered since submission and acceptance of the acute toxicity data. Regardless of whether new data is generated or existing data is referenced, registrants must clearly identify the test material by EPA Registration Number. If more than one confidential statement of formula (CSF) exists for a product, the registrant must indicate the formulation actually tested by identifying the corresponding CSF.

In deciding how to meet the product specific data requirements, registrants must follow the directions given in the Data Call-In Notice and its attachments appended to the RED. The DCI Notice contains two response forms which are to be completed and submitted to the Agency within 90 days of receipt. The first form, "Data Call-In Response," asks whether the registrant will meet the data requirements for each product. The second form, "Requirements Status and Registrant's Response," lists the product specific data required for each product, including the standard six acute toxicity tests. A registrant who wishes to participate in a batch must decide whether he/she will provide the data or depend on someone else to do so. If a registrant supplies the data to support a batch of products, he/she must select one of the following options: Developing Data (Option 1), Submitting an Existing Study (Option 4), Upgrading an Existing Study (Option 5) or Citing an Existing Study (Option 6). If a registrant depends on another's data, he/she must choose among: Cost Sharing (Option 2), Offers to Cost Share (Option 3) or Citing an Existing Study (Option 6). If a registrant does not want to participate in a batch, the choices are Options 1, 4, 5 or 6. However, a registrant should know that choosing not to participate in a batch does not preclude other registrants in the batch from citing his/her studies and offering to cost share (Option 3) those studies.

One hundred and thirty-five products were found which contain **Atrazine** as the active ingredient. These products have been placed into fourteen batches and a "No Batch" category in accordance with the active and inert ingredients and type of formulation. Furthermore, the following bridging strategies are deemed acceptable for this chemical:

- Batch 11: EPA Reg. No. 524-493 and 524-497 may cite the data generated with EPA Reg. No. 524-510.
- Batch 13: Each product in this Batch should generate their own primary eye irritation study utilizing the fertilizer with the highest levels of nitrogen.
- Batch 14: Each product in this Batch should generate their own primary eye irritation study utilizing the fertilizer with the highest levels of nitrogen.
- No Batch: Each product in this Batch should generate their own data.

NOTE: The technical acute toxicity values included in this document are for informational purposes only. The data supporting these values may or may not meet the current acceptance criteria.

Batch 1	EPA Reg. No.	% Active Ingredient
	100-529	98.00
	11603-32	98.81
	19713-7	97.00
	19713-375	97.00
	34704-784	97.00
	35915-6	98.50
	62719-456	97.60

Batch 2	EPA Reg. No.	% Active Ingredient
	100-585	90.0
	1381-159	90.0
	1386-660	90.0
	2749-485	90.0
	5905-522	90.0
	9779-253	90.1
	11773-13	90.0

Batch 2	EPA Reg. No.	% Active Ingredient
	19713-76	90.0
	19713-499	90.0
	33270-9	90.0
	34704-622	90.0
	34704-689	90.0
	35915-3	90.0
	42750-53	90.0
	55467-4	90.0
	59639-106	90.0
	62719-313	90.0
	66222-37	90.0

Batch 3	EPA Reg. No.	% Active Ingredient
	9779-254	80.0
	34704-490	80.0
	51036-9	80.0
	51036-159	80.0

Batch 4	EPA Reg. No.	% Active Ingredient
	19713-80	53.48
	19713-291	53.48

Batch 5	EPA Reg. No.	% Active Ingredient
	100-497	43.5
	534-97	43.5
	829-268	43.0
	1381-158	43.0

Batch 5	EPA Reg. No.	% Active Ingredient
	1386-647	43.0
	2749-336	43.0
	5905-470	43.0
	7401-318	43.0
	9404-72	43.0
	9779-255	43.0
	11773-1	43.6
	19713-11	43.0
	19713-498	43.0
	33270-10	43.5
	34704-69	43.0
	34704-690	43.0
	35915-4	43.0
	42750-44	43.0
	42750-45	43.0
	48273-11	43.5
	51036-158	43.0
	55467-5	43.5
	62719-312	43.0
	66222-36	43.6
Batch 6	EPA Reg. No.	% Active Ingredient
	100-817	Atrazine: 33.7 S-Metolachlor: 26.1

Batch 6	EPA Reg. No.	% Active Ingredient
	100-817	Atrazine: 33.7 S-Metolachlor: 26.1
	100-886	Atrazine: 33.7 S-Metolachlor: 26.1

Batch 7	EPA Reg. No.	% Active Ingredient
	352-600	Atrazine: 28.4 Dimethenamid: 24.8
	7969-146	Atrazine: 28.4 Dimethenamid: 24.8

Batch 8	EPA Reg. No.	% Active Ingredient
	7969-136	Atrazine: 22.23 Dicamba K Salt: 13.42
	42750-41	Atrazine: 22.23 Dicamba K Salt: 13.42
	51036-307	Atrazine: 22.23 Dicamba K Salt: 13.42
	70907-16	Atrazine: 21.92 Dicamba K Salt: 13.45

Batch 9	EPA Reg. No.	% Active Ingredient
	264-477	Atrazine: 21.62 Bromoxynil Octanoate: 15.74
	9779-348	Atrazine: 21.62 Bromoxynil Octanoate: 15.74
	51036-255	Atrazine: 21.62 Bromoxynil Octanoate: 15.74
	71368-27	Atrazine: 21.62 Bromoxynil Octanoate: 15.74

Batch 10	EPA Reg. No.	% Active Ingredient
	51036-363	Atrazine: 25.0 Bentazon: 27.0
	60063-18	Atrazine: 25.0
		Bentazon: 27.0

Batch 11	EPA Reg. No.	% Active Ingredient
	524-493	Atrazine: 16.1
		Acetochlor: 21.5
		Glyphosate: 8.1
	524-497	Atrazine: 16.2
		Acetochlor: 21.6
		Glyphosate: 8.2
	524-510	Atrazine: 15.9
		Acetochlor: 21.2
		Glyphosate: 15.9

Batch 12	EPA Reg. No.	% Active Ingredient
	19713-513	Atrazine: 16.6 Acetochlor: 24.8
	62719-371	Atrazine: 16.6 Acetochlor: 24.8

Batch 13	EPA Reg. No.	% Active Ingredient
	538-18	1.055
	538-163	0.600
	538-229	1.320
	538-234	0.600

Batch 13	EPA Reg. No.	% Active Ingredient
	9198-186	1.110

Batch 14	EPA Reg. No.	% Active Ingredient
	769-943	0.92
	7138-14	0.90
	7401-336	0.83
	8660-12	1.16
	8660-18	1.18
	8660-32	0.58
	8660-41	0.92
	8660-187	0.63
	8660-204	0.92
	8660-223	1.05
	8660-224	0.91
	8660-245	0.42
	9198-153	0.92
	9404-51	0.92
	9404-55	0.79
	9404-56	1.50
	9404-80	0.57
	9404-81	1.28
	9404-82	1.15
	9779-359	0.92
	9779-360	0.80
	10404-39	0.80
	10404-94	1.05
	10404-95	0.45
	10404-96	0.92
	34704-822	0.92

Batch 14	EPA Reg. No.	% Active Ingredient
	35512-14	0.80
	35512-34	0.57
	35512-41	1.22
	35512-42	0.44
	35512-46	0.92
	59144-32	1.16

No Batch	EPA Reg. No.	% Active Ingredient
	100-827	Atrazine: 28.7 S-Metolachlor: 35.8
	100-928	Atrazine: 23.3 Flumetsulam: 1.0 S-Metolachlor: 29.1
	100-956	Atrazine: 74.93 Prosulfuron: 1.78
	100-962	Atrazine: 25.7 Glyphosate: 18.0
	239-2618	14.0
	241-353	Atrazine: 32.54 Imazethapyr: 4.36
	264-573	Atrazine: 43.2 Isoxaflutole: 3.2
	264-668	Atrazine: 33.42 Glufosinate-ammonium: 10.00
	270-288	23.6
	352-585	Atrazine: 86.78 Nicosulfuron: 1.34 Rimsulfuron: 1.34
	524-329	Atrazine: 16.3 Alachlor: 27.2

No Batch	EPA Reg. No.	% Active Ingredient
	524-418	Atrazine: 15.3 Alachlor: 27.05
	524-480	Atrazine: 18.3 Acetochlor: 46.3
	524-485	Atrazine: 26.9 Acetochlor: 33.4
	524-509	Atrazine: 20.9 Glyphosate: 20.9
	524-511	Atrazine: 14.5 Acetochlor: 29.0
	3125-523	Atrazine: 50.5 Flufenacet: 19.6 Metribuzin: 4.9
	7969-192	Atrazine: 35.3 Dimethenamid-P: 18.2
	7969-200	Atrazine: 29.5 Dimethenamid-P: 24.1
	19713-6	Atrazine: 26.9 Acetochlor: 33.4Atrazine: 20.9 Glyphosate: 20.9Atrazine: 14.5 Acetochlor: 29.0Atrazine: 50.5 Flufenacet: 19.6 Metribuzin: 4.9Atrazine: 35.3 Dimethenamid-P: 18.2Atrazine: 29.5
	19713-171	
	34704-728	
	42750-50	
	62719-368	

Appendix H: ATRAZINE MONITORED WATERSHEDS

LA1047002	Iberville Water Works District #3	Louisiana
MO1010204	Dearborn	Missouri
IL1170400	Gillespie	Illinois
KY0280267	Marion Water Department	Kentucky
KY0710247	Lewisburg Water Works	Kentucky
IA5903011	Chariton Municipal Water Works	Iowa
MO2010112	Bucklin	Missouri
IN5299001	Batesville Water Utility	Indiana