

Technical Support Document

Identification and Discussion of Sources of Regional Point Source NOx and SO2 emissions other than EGUs

Tim Smith and Doug Grano EPA/OAQPS

John Robbins, Kevin Culligan and Mikhail Adamantiades EPA/CAMD

January 2004

Contents

1. Introduction

2. Discussion of the Emissions Inventory. Identification of Source Categories Emitting More than 1 Percent of the Regional Stationary Source Total

3. Discussion of Control Measures for SO2 Source Categories

4. Discussion of Control Measures for NOx Source Categories

1. Introduction

The purpose of this document is to discuss the currently available information on emissions and control measures for non-EGU sources of SO2 and NOx other than boilers and turbines. We conducted this analysis for a region that includes the following 30 States and the District of Columbia: AL, AR, DC, DE, FL, GA, IA, IL, IN, KS, KY, LA, MA, MD, MI, MN, MO, MS, NC, ND, NJ, NY, OH, OK, PA, SC, TN, TX, VA, WI, WV.

In order to gain perspective on emissions and controls from categories other than boilers and turbines, we carried out the following steps. First, we developed a year 2010 projected emissions inventory and identified source categories with the greatest emissions of SO2 and NOx. For relatively high-emitting categories, we searched for available sources of information on potentially applicable control measures and their costs.

2. Discussion of the Emissions Inventory. Identification of Source Categories Emitting More than 1 Percent of the Regional Stationary Source Total

For this analysis, we used a projected year 2010 inventory [projected from a 1996 base year inventory as described in a document entitled "Air Quality Modeling Technical Support Document for the Proposed Interstate Air Quality Rule (January 2004)]." We produced a spreadsheet that includes all the point source emissions units of SO2 and NOx in the 30-State plus D.C. geographic area described above. This spreadsheet is included in the docket, and is entitled "30 State plus DC 2010 combined nonEGU unit level sorted by NOx and SO2 zero emitting taken out." Summaries of the inventory are shown in Table 1 (SO2 summary) and Table 2 (NOx summary).

In examining non-EGU categories for emission reduction opportunities, we identified categories emitting more than one percent of the overall projected SO2 or NOx year 2010 emissions inventory for the geographic area of interest (30 States plus the District of Columbia). For SO2, the total projected year 2010 emissions from stationary sources in this 30-State region are about 13 million tons. For NOx, the total is 6 million tons. Accordingly for SO2, one percent of the inventory is 130,000 tons per year, and for NOx, one percent of the inventory is 60,000 tons per year. Tables 1 and 2 show, **in bold**, the source categories that meet or exceed these levels. In listing source categories for these tables, we attempted to define logical groupings of industries or equipment using the source classification codes (SCCs).

 Table 1. Projected Year 2010 Sulfur Dioxide Emissions for non-Utility Point Source in 30 States + the District of Columbia

EMISSIONS CATEGORY/ SCCs included in the category	Projected Year 2010 SO ₂ EMISSIONS (tons per year)	% OF TOTAL POINT SOURCE EMISSIONS (12,625,000 tons/yr)	
Boilers			
102XXXXX -Industrial Boilers	Industrial boiler total : 1,436,000		11
103XXXXX - Commercial/Institutional	Commercial/institutional total:	1.6	
105XX XXX - Space Heaters Commercial/Industrial	Space heater total: 1,300	< 0.1	
IC engines including combustion turbines (2XXXXXX)	Engine and turbine total: 4,800	< 0.1	
Industrial Processes			
301XXXXX	Chemical mfg (total: 322,000)		2.6
30119701	Olefin production	1,300	< 0.1
301005XX	Carbon black production	50,000	0.4
301032XX	Elemental sulfur production	72,000	0.6
301023XX	Sulfuric acid manufacturing	128,000	1.0
301900XX	Fuel-fired eq	8,500	<0.1
301999XX	"Other"	45,000	0.4
[all other 301's not listed]	All other 301XXXXX 15,000		0.1
302XXXXX	Food and agriculture (total = 5, 1)	00)	<0.1

EMISSIONS CATEGORY/ SCCs included in the category	Projected Year 2010 SO ₂ EMISSIONS (tons per year)	% OF TOTAL POINT SOURCE EMISSIONS (12,625,000 tons/yr)		
303XXXXX	Primary metals (Total: 281,000)	2.2		
303001XX and 303000XX	Primary Aluminum 36,000	0.3		
303005XX	Primary copper 7, 200	< 0.1		
303014XX	Barium Ore Processing 3,100	< 0.1		
303003XX	By-product coke mfg 81,000	0.6		
303006XX	Ferroalloy 3,700	< 0.1		
303008XX	Iron production 24,000	0.2		
303009XX	Steel only (not integ ir/steel) 13,000	0.1		
303010XX	Primary lead 99,000	0.8		
[total from those not listed]	All other 303XXXXX's 14,000	0.1		
304XXXXX	Secondary metals (total: 40,000)	0.3		
304020XX	Furnace electrode mfg 15,000	0.1		
304004XX	Secondary lead 15,000	0.1		
[total from those not listed]	ted] All other 304XXXX's 10,000			
305XXXXX	Mineral products (total: 302, 000)	2.4		
305006XX,305007XX, 39000201	Cement-dry, wet, in process coal 192,000	1.5		
39000203, 305016XX	Lime - kiln, in process coal use 25,000	0.2		
30501001	Coalmining cleaning matl handling 9,600	< 0.1		
305900XX	Fuel fired eq 11,000	0.1		
305014XX	Glass melting furnaces 24,000	0.2		
[total from those not listed]	All other 305XXXXX's 40,000	0.3		
306XXXXX	Petroleum industry (total: 372,000)	3.0		
306002XX	Catalytic cracking 158,000	1.3		
306009XX	Flares 24,000	0.2		
306008XX and 306888XX	Fugitives 19,000	0.2		
306099XX	Incinerators 13,000	0.1		
30601401	Coke Calcining 16,000	0.1		
306001XX	Process heaters 112,000	0.9		
[total from those not listed]	All other 306XXXXX's 30,000	0.3		

EMISSIONS CATEGORY/ SCCs included in the category	Projected Year 2010 SO ₂ EMISSIONS (tons per year)	% OF TOTAL POINT SOURCE EMISSIONS (12,625,000 tons/yr)
307XXXXX	Pulp and Paper (total: 131,000)	1.0
30700106 30700104 and 30700110	Kraft process - Lime kiln 6,400 Kraft process - Recovery fumace 102,000	<0.1 0.8
307002XX	Pulp mills Sulfite process 7,200	<0.1
[total from those not listed]	All other 307XXXXX's 15,000	0.1
310XXXXX	Oil and gas production 93,000	0.7
399XXXX	"Misc manufacturing- misc" 11,000	0.1
50XXXXXX	Waste incinerators 16,000	0.1

Table 2. NO_X Sources

EMISSIONS CATEGORY/ SCCs included in the category	Projected Year 2010 NO _X EMISSIONS (tons per year)	% OF TOTAL POINT SOURCE NO _X (6,000,000 tons/yr)
Boilers		
102XXX -Industrial Boilers	Industrial boiler total 770,000	13
103XXX - Commercial/Institutional	Commercial/institutional total: 73,000	1.2
105XXXX- Space Heaters Commercial/Industrial	Space heater total: 3,400	.1

L
Ξ
Μ
S
ŏ
۵
ľ
4
J
2
A
PA
ш
Sſ

EMISSIONS CATEGORY/ SCCs included in the category	Projected Year 2010 NO _X EMISSIONS (tons per year)	% OF TOTAL POINT SOURCE NO _X (6,000,000 tons/yr)	
Internal Combustion 2XXXXXXX	Total internal combustion 739,000	12	
20200201,20200203,20200901, 20300102, 20300202, 20300702, 204003XX	Combustion turbines 124,000	2.1	
	Remainder (assume all are IC engines) 615,000	10	
Industrial processes			
301XXXXX	Chemical mfg (total) 184,000		
301005XX 301900XX 301999XX 301003XX 301013XX	Carbon black production6,500Fuel-fired eq23,000"Other"43,000Ammonia production22,000Nitric acid production48,000	0.1 0.4 0.7 0.4 0.8	
[all other 301's not listed]	All other 301XXXXX 41,500	0.7	
302XXXXX	Food and agriculture (total) 6,800	0.1	
303XXXXX	Primary metals (total) 108,000		
303003XX 303900XX 303009XX 303010XX 303023XX	By-product coke mfg19,000Fuel fired eq7,000Iron production4,900Steel only (not integ ir/steel)24,000Taconite46,000	0.3 0.1 0.1 0.4 0.8	
[total from those not listed]	All other 303XXXXX's 7,000	0.1	
304XXXXX	Secondary metals 18,000	0.3	

Ţ	
Ξ	
Σ	
อี	
20	
ш	
2	
CHI	
ž	
4	
P	
ш	
S	

EMISSIONS CATEGORY/ SCCs included in the category	Projected Year 2010 NO _X EMISSIONS (tons per year)	% OF TOTAL POINT SOURCE NO _X (6,000,000 tons/yr)
305XXXXX	Mineral products (total:) 289,000	4.8
30500 6XX ,30500 7XX , 39000201 39000203, 305016XX 30501001	Cement-dry, wet, in process coal 161,000Lime - kiln, in process coal use18,000Coalmining cleaning matl handling4,600	2.7 0.3 0.1
305014XX	Glass melting furnaces 72,000	1.2
[total from those not listed]	All other 305XXXXX's 33,000	0.5
306XXXXX	Petroleum industry (total:) 204,000	3.4
30600401	Blowdown systems 4,600	0.1
306002XX	Catalytic cracking 29,000	0.5
306009XX	Flares 6,200	0.1
306001XX	Process heaters 160,000	2.7
[total from those not listed]	All other 306XXXXX's 4,000	0.1
307XXXXX	Pulp and Paper (total) 89,000	1.5
307001XX 30700106 30700104 and 30700110 30700105	Kraft process Lime kih 18,000 Recovery furnace 47,000 Smelt dissolving 9,600	0.3 0.8 0.2
[total from those not listed]	All other 307XXXXX's 14,000	0.2
310XXXXX	Oil and gas production 57,000	1.0
390XXXXX	Misc in-process fuel use 28,000	0.5
399XXXX	"Misc manufacturing- misc" 11,000	0.2
50XXXXXX	Waste incinerators 43,000	0.7

3. Discussion of Control Measures for SO2 Source Categories

For a number of source categories, including all of those emitting more than one percent of the point source inventory, we conducted a review to identify available controls. At this point in time, we have not developed cost estimates for these controls, and we are continuing to seek information sufficient to provide for reliable cost estimates.

a. Cement Kilns

For cement kilns, we identified the following potential control measures:

– Fuel switching. While EPA believes it is generally infeasible for cement kilns to switch to natural gas, it may be possible to achieve relatively modest reductions in sulfur dioxide through switching to lower sulfur coal. We are seeking further information on the quantities and sulfur content of coal now used in cement kilns, to allow quantification of potential SO₂ reductions and their cost.

– Flue gas desulfurization. We are aware of studies where others such as the Western Regional Air Partnership (WRAP) have concluded that add-on flue gas desulfurization (FGD) scrubbers are not considered cost-effective, in part due to the inherent control of SO_2 due to the limestone in the kiln. We are seeking any additional information relative to this category, including any engineering reviews that may have been conducted for prevention of significant deterioration (PSD) permits.

b. Petroleum refinery catalytic cracking.

For petroleum refinery catalytic cracking units, we note that sulfur dioxide emissions are being increasingly controlled by FGD scrubbers. Many of these FGD systems are being installed in response to settlements of refinery enforcement cases. We have not yet developed cost estimates for this category, although information may be available to do so.

At present the projected 2010 inventories on which emission reduction opportunities and reductions can be calculated do not reflect the numerous enforcement settlement agreements that are in place. Any calculations of the potential for future reduction opportunities must take this into account.

c. Sulfuric acid manufacturing.

For sulfuric acid manufacturing, our emission inventory source classification codes (SCCs) differentiate emissions units according to their percent recovery, as reported by the source or by the state air agency. In addition, EPA's AP-42 emission factors are related to the percent recovery The source classification codes (SCCs) for sulfuric acid manufacturing, and emission factors, for sulfuric acid manufacturing, are as follows:

F	
2	
7	
5	
ğ	
2	
С	
٣	
H	
5	
2	
◄	
٩	
_ თ	
Š	

SCC Code	% Recovery	Emission factor, lb SO2 per ton of product
3-01-023-18	93	96
3-01-023-16	94	82
3-01-023-14	95	70
3-01-023-12	96	55
3-01-023-10	97	40
3-01-023-08	98	26
3-01-023-06	99	14
3-01-023-04	99.5	7
3-01-023-01	99.7	4

We used these emissions factors and a review of emissions inventory information to obtain a preliminary estimate of the degree to which sulfuric acid manufacturing facilities could reduce their emissions by upgrading the current percent recovery sufficiently to meet the 4 lb/ton new source performance standard (NSPS). Appendix 1 shows an analysis for the potential for such reductions in an area of the eastern United States that included 28 States plus the District of Columbia. From this analysis, it appears that the potential for such reductions would appear to be about ½ the current inventory. Presently, EPA notes that these estimates are somewhat uncertain. Additionally, EPA staff are not aware of any available engineering or cost analysis describing the measures and associated costs required to upgrade to the NSPS from the various possibilities for current conditions (i.e., from 93 to 99.7 percent recovery, from 97 to 99.7 percent recovery, etc).

d. Industrial and Commercial Boilers

There are two primary methods that industrial and commercial boilers could use to reduce emissions of SO2, they could switch to lower sulfur coal or they could install post combustion emission control devices.

Because EPA has limited data on the sulfur content of fuel burned by industrial and commercial boilers, EPA is unable to develop accurate estimates of the amount of emission reductions that could be obtained from switching to lower sulfur coal. The information that EPA has suggests that many of these units are not burning the lowest sulfur coal available and could therefore reduce SO2 emissions by switching to lower sulfur coal. If one assumes that the

costs that these units would incur is similar to the costs that an EGU would incur, there may be opportunities for low cost emission reductions from this sector. The costs that these units incur to switch to lower sulfur coal is dependent upon a number of factors including; cost for lower sulfur coal and cost to make any necessary modifications to the boiler needed to burn the lower sulfur coal. Because these boilers are typically owned by companies purchasing significantly less coal than the owners of EGUs, they may not be able to purchase lower sulfur coal at costs as low as the owners of EGUs. Similarly because many industrial and commercial boilers are smaller and run at lower capacity factors, the capital expenditures necessary to switch to lower sulfur coal may be higher. "Preliminary Cost Estimates for Flue Gas Conditioning Retrofits for Industrial Boilers" (located in the docket) details some of the costs an industrial boiler may incur when switching to a lower sulfur coal.

EPA has similar problems making estimates about the cost of installing post combustion SO2 control equipment on industrial boilers. While some industrial boilers (particularly larger boilers, that are frequently operated, that are currently burning higher sulfur coal and that have open space around them for installation of post combustion controls) may have highly cost effective emission reduction opportunities others may not. The cost of reducing SO2 emissions using post combustion control equipment is highly dependent upon: the size of the boiler, the capacity factor of the unit, the sulfur content of the fuel the unit is burning and the ease (or difficulty) of installing post combustion control equipment at the unit. "Preliminary SO2 Control Cost Estimates for Industrial Boilers", (located in the docket) details potential costs for post combustion SO2 controls depending upon the size and capacity factor of the boiler and the sulfur content of the fuel burned by the boiler. It attempts to include the costs of such difficulty in retrofitting post combustion control devices but may not include all costs associated with such difficulty. Furthermore, EPA does not have a good understanding of the costs and operational effects of integrating post combustion SO2 and NOx control technologies for these particular sources. Industrial boiler backend equipment configurations and flue gas temperatures exiting Industrial boilers are different than those generally present with EGUs. These features may also vary greatly among industrial boilers themselves, making it difficult to determine feasibility of some of these technologies and apply one single set of design criteria to them.

4. Discussion of Control Measures for NOx Source Categories

As noted in table 2, [in addition to boilers and combustion turbines] there are four source categories exceeding one percent of the regionwide stationary source inventory for NO_x --cement kilns, internal combustion (IC) engines, process heaters, and glass manufacturing. Unlike SO2, EPA has developed more robust cost estimates for NOx controls. These estimates were discussed in EPA's NOx SIP Call rule, and they reflect in part a number of Available Control Techniques (ACT) documents developed under section 183(c) of the Clean Air Act. As shown in the following table, EPA determined the cost effectiveness of available controls for these source categories (for additional information, see the Regulatory Impact Analysis for the NOx SIP Call, Volume 1, Section 7, September 1998).

Source category	\$/ton NOx reduced (ozone season 1990\$)
cement kilns	1,500
glass manufacturing	2,020
process heaters	2,900
stationary IC engines	1,200

The emissions budgets for EPA's NO_x SIP Call rule (63 FR 57417) reflect highly costeffective emission reductions for large cement kilns and IC engines, in addition to those for large industrial boilers and turbines. In the NOx SIP Call rule, "large" cement kilns and IC engines means sources emitting greater than one ton NOx per day (ozone season average). That is, in States covered by the NOx SIP Call rule, the required NOx budgets were calculated, in part, assuming emission reductions at large sources in these 4 source categories. At the time of the NO_x SIP Call, we did not determine that highly cost effective NO_x emission reductions were available from large process heaters or glass manufacturing, as their estimated cost per ton exceeded our "highly cost effective" definition of \$2000 per ton (1990\$).

We describe below three possible approaches for obtaining NOx reductions beyond those calculated in the NOx SIP Call rule with respect to non-EGU point sources. (Non-EGU boilers and turbines are discussed later in this section.)

1. Extend the NOx SIP Call level of control to States not covered by the NOx SIP Call rule but covered by the IAQR. Under this approach, the affected statewide NOx budgets would reflect emissions reductions at large cement kilns and IC engines. This approach would affect the following States: AR, FL, IA, KS, LA, MN, MS, ND, OK, TX, & WI. We estimate the NOx emission reduction would be up to about 77,000 tons per year.¹

2. Calculate emission reductions at cement kilns and IC engines which are larger than 100 tons per year. Under this approach, additional NO_x emission reductions would be obtained by reducing the NOx SIP Call cutoff for IC engines and cement kilns to 100 tons/year (from 365 tons/year or 1 ton/day). Sources of this size will generally be subject to NO_x control in ozone nonattainment areas under the RACT requirements of the Clean Air Act. This approach would affect the following States: AR, FL, IA, KS, LA, MN, MS, ND, OK, TX, & WI. In addition, this calculation would affect units emitting between 100-365 tons/year in following NOx SIP Call states: AL, GA, IL, IN, KY, MI, MO, NC,

¹ IC engines emitting greater than 364 tons/year in the 11 states total emissions of 76,066. A 90% reduction gives a 68,459 ton/year reduction. Cement kilns emitting more than 364 tons/year in the 11 states account for 27,035 tons/year. A 30% control level results in a reduction of 8,111 tons/year. These estimates assume the units are currently uncontrolled.

OH, SC, TN, VA, & WV. We estimate the emission reduction to be up to about 252,000 tons per year in the 11 States.² In addition, in the NOx SIP Call States (not including OTC States which have already implemented NOx RACT) we estimate another 50,000 tons/year.³

3. Apply RACT controls in all States covered by the IAQR. Under this approach, reductions could be obtained by applying NO_X RACT statewide for all NO_X sources greater than 100 tons per year. This RACT requirement may be separate or in addition to requirements of options 1 or 2 above and is similar to RACT requirements already being implemented in the Northeast Ozone Transport Region.

Opportunities for reductions in emissions at glass manufacturing and process heaters are modest because the inventory of NOx emissions is relatively small. We estimate a potential emissions reduction from large units in these 2 categories to be about 33,000 tons/year.⁴

Industrial and Commercial Boilers:

There are two primary methods that industrial and commercial boilers could use to reduce emissions of NOx: they could install combustion controls (e.g., low-NOx burners) or they could install post combustion emission control devices. EPA has developed estimates of the cost of Nox reduction technologies for these sources. "Preliminary Nox Control Cost Estimates for Industrial Boilers" (located in the docket) details these costs.

As with SO2 controls, there are a number of uncertainties associated with the estimates for this sector. First, because EPA does not possess actual capacity factor data for all of the sources in this sector, EPA had to assume capacity factors in order to estimate costs. Such estimates are difficult to accurately estimate for this particular sector due to the wide variety of operating characteristics of these sources. For example, capacity factors for this sector can range from near zero (standby units) up to 100% as well as anywhere in between these extremes. In

⁴ Emissions in the 30 State area from glass manufacturing and process heaters above 364 tons/year are estimated to be 48,297 and 62,477 tons/year, respectively. Assuming a 30% control level, the emission reduction would be about 33,000 tons/year.

 $^{^{2}}$ 1,267 IC engines emitting greater than 100 tons/year in the 11 states total emissions of 270,068. A 90% reduction gives a 243,061 ton/year reduction. 32 cement kilns emitting more than 100 tons/year in the 11 states account for 28,585 tons/year. A 30% control level results in a reduction of 8,576 tons/year. These estimates assume the units are currently uncontrolled.

³ 283 IC engines emitting between 100-365 tons/year have total emissions of 54,506. A 90% reduction gives a 49,055 ton/year reduction. 8 cement kilns emitting between 100-365 tons/year account for 1,615 tons/year. A 30% control level results in a reduction of 484 tons/year. These estimates assume the units are currently uncontrolled.

comparison, utility boilers typically operate with high capacity factors.

Second, similar to post-combustion SO2 controls, space constraints have the potential of complicating or making installation of SCR technology infeasible.

Third, EPA's current inventories of industrial boilers in the SIP call region do not reflect all the NOx control technologies planned as a result of the SIP call. As a result, the NOx emission rates used to develop cost estimates for these sources are not based on full implementation of the SIP call.

Last, EPA does not have a good understanding of the costs and operational effects of integrating post combustion SO2 and NOx control technologies for these particular sources. Industrial boiler backend equipment configurations and flue gas temperatures exiting industrial boilers are different than those generally present with EGUs. These features may also vary greatly among industrial boilers themselves, making it difficult to determine feasibility of some of these technologies and apply one single set of design criteria to them.

		POINT				SO2_ ANN			
FIPSST	PLANTID	ID	SCC		SIC	ANN	Subgrouping	Available controls	Annual SO2
48	0031	097	30102201	General	2911	1,032			
17	1217	005	30102201	General	2819	119			
37	0071	014	30102301	Absorber/@ 99.9% Conversion	2874	3,053			
12	0059	042	30102301	Absorber/@ 99.9% Conversion	2874	1,745			
12	0055	004	30102301	Absorber/@ 99.9% Conversion	2874	1,705			
12	0059	044	30102301	Absorber/@ 99.9% Conversion	2874	1,691			
37	0071	011	30102301	Absorber/@ 99.9% Conversion	2874	1,682			
12	0055	005	30102301	Absorber/@ 99.9% Conversion	2874	1,677			
12	0053	005	30102301	Absorber/@ 99.9% Conversion	2874	1,543			
12	0046	032	30102301	Absorber/@ 99.9% Conversion	2874	1,541			
12	0059	004	30102301	Absorber/@ 99.9% Conversion	2874	1,529			
12	0046	033	30102301	Absorber/@ 99.9% Conversion	2874	1,512			
12	0059	003	30102301	Absorber/@ 99.9% Conversion	2874	1,508			
37	0071	012	30102301	Absorber/@ 99.9% Conversion	2874	1,502			
12	0005	007	30102301	Absorber/@ 99.9% Conversion	2874	1,499			
12	0008	005	30102301	Absorber/@ 99.9% Conversion	2874	1,484			
12	0046	012	30102301	Absorber/@ 99.9% Conversion	2874	1,478			
12	0059	002	30102301	Absorber/@ 99.9% Conversion	2874	1,474			
12	0008	006	30102301	Absorber/@ 99.9% Conversion	2874	1,413			
12	0005	003	30102301	Absorber/@ 99.9% Conversion	2874	1,405			
22	0004	008	30102301	Absorber/@ 99.9% Conversion	2874	1,330			
12	0005	004	30102301	Absorber/@ 99.9% Conversion	2874	1,263			
12	0002	022	30102301	Absorber/@ 99.9% Conversion	2874	1,214			
12	0048	002	30102301	Absorber/@ 99.9% Conversion	2874	1,129			
12	0053	004	30102301	Absorber/@ 99.9% Conversion	2874	1,008			
48	0010	002	30102301	Absorber/@ 99.9% Conversion	2819	1,004			
12	0002	021	30102301	Absorber/@ 99.9% Conversion	2874	999			
12	0051	017	30102301	Absorber/@ 99.9% Conversion	2874	905			
12	0051	016	30102301	Absorber/@ 99.9% Conversion	2874	859			
12	0053	003	30102301	Absorber/@ 99.9% Conversion	2874	769			
37	0071	013	30102301	Absorber/@ 99.9% Conversion	2874	685			

Appendix 1. Preliminary Estimates of Potential SO2 Reductions from Sulfuric Acid Manufacturing

									-
12	0057	005	30102301	Absorber/@ 99.9% Conversion	2874	510			
48	0001	277	30102301	Absorber/@ 99.9% Conversion	2911	204			
17	0104	120	30102301	Absorber/@ 99.9% Conversion	2911	167			
42	0032	614	30102301	Absorber/@ 99.9% Conversion	3339	153			
22	0005	042	30102301	Absorber/@ 99.9% Conversion	2911	86			
22	0016	01M	30102301	Absorber/@ 99.9% Conversion	2911	70			
22	0005	0Z3	30102301	Absorber/@ 99.9% Conversion	2911	16			
12	0005	008	30102301	Absorber/@ 99.9% Conversion	2874	4			
22	0016	05E	30102301	Absorber/@ 99.9% Conversion	2911	2			
48	0001	278	30102301	Absorber/@ 99.9% Conversion	2911	0	42,970 99.9% conv	None	0
18	0242	003	30102304	Absorber/@ 99.5% Conversion	2819	1,339			
12	0005	003	30102304	Absorber/@ 99.5% Conversion	2874	900			
12	0005	002	30102304	Absorber/@ 99.5% Conversion	2874	805			
47	0004	017	30102304	Absorber/@ 99.5% Conversion	3331	778			
48	0029	009	30102304	Absorber/@ 99.5% Conversion	2874	625			
28	0044	01	30102304	Absorber/@ 99.5% Conversion	2874	127			
29	0001	045	30102304	Absorber/@ 99.5% Conversion	2879	108	4,681 99.5% conv	3/7=42% reduction	2006
								to get to NSPS	
								of 4/ lb/ton	
17	0100	002	30102306	Absorber/@ 99.0% Conversion	3339	2,820			
47	0004	021	30102306	Absorber/@ 99.0% Conversion	3331	478			
12	0052	006	30102306	Absorber/@ 99.0% Conversion	2874	345			
28	0044	02	30102306	Absorber/@ 99.0% Conversion	2874	216	3,859 99.0% conv	10/14=71%	2756
22	0007	001	30102308	Absorber/@ 98.0% Conversion	2819	10,665			
22	0028	001	30102308	Absorber/@ 98.0% Conversion	2819	9,613			
22	0033	002	30102308	Absorber/@ 98.0% Conversion	2819	7,827			
48	0037	011	30102308	Absorber/@ 98.0% Conversion	2819	7,579			
22	0004	005	30102308	Absorber/@ 98.0% Conversion	2874	5,357			
48	0037	008	30102308	Absorber/@ 98.0% Conversion	2819	4,555			
22	0004	007	30102308	Absorber/@ 98.0% Conversion	2874	3,474			
22	0004	006	30102308	Absorber/@ 98.0% Conversion	2874	3,244			
22	0033	003	30102308	Absorber/@ 98.0% Conversion	2819	2,742			
39	5054	001	30102308	Absorber/@ 98.0% Conversion	2819	2,491			
21	0001	001	30102308	Absorber/@ 98.0% Conversion	2819	2,305			
12	0008	004	30102308	Absorber/@ 98.0% Conversion	2874	1,401			
-				<u> </u>		-			

51	0078	002	30102308	Absorber/@ 98.0% Conversion
10	0032	011	30102308	Absorber/@ 98.0% Conversion
10	0032	028	30102308	Absorber/@ 98.0% Conversion
13	0077	004	30102308	Absorber/@ 98.0% Conversion
13	0008	001	30102308	Absorber/@ 98.0% Conversion
13	0077	003	30102308	Absorber/@ 98.0% Conversion
40	1468	001	30102308	Absorber/@ 98.0% Conversion
55	0083	P01	30102308	Absorber/@ 98.0% Conversion
39	5001	005	30102308	Absorber/@ 98.0% Conversion
01	5009	004	30102310	Absorber/@ 97.0% Conversion
22	0004	057	30102310	Absorber/@ 97.0% Conversion
39	5048	003	30102310	Absorber/@ 97.0% Conversion
51	0026	14A	30102314	Absorber/@ 95.0% Conversion
22	0005	017	30102318	Absorber/@ 93.0% Conversion
22	0005	016	30102318	Absorber/@ 93.0% Conversion
54	0002	021	30102318	Absorber/@ 93.0% Conversion
39	5048	004	30102318	Absorber/@ 93.0% Conversion
42	0035	107	30102318	Absorber/@ 93.0% Conversion
48	0038	001	30102319	Concentrator
22	0006	002	30102319	Concentrator
48	0038	004	30102321	Storage Tank Vent
22	0033	013	30102321	Storage Tank Vent
48	0011	139	30102322	Process Equipment Leaks
22	0004	034	30102322	Process Equipment Leaks
22	0005	041	30102322	Process Equipment Leaks
48	0038	008	30102322	Process Equipment Leaks
22	0003	007	30102399	Other Not Classi fied
47	0092	003	30102399	Other Not Classi fied
10	0032	027	30102399	Other Not Classi fied
10	0032	029	30102399	Other Not Classi fied
10	0032	036	30102399	Other Not Classi fied
10	0032	074	30102399	Other Not Classi fied
24	0109	034	30102399	Other Not Classi fied
22	0005	025	30102399	Other Not Classified

1,157

2,386

1,614

1,529

65,256 98% conv

3,571 97% conv

670 95% conv

3,589 93% conv

22/26 reduction=

36/40 reduction=

66/70 reduction=

92/96 reduction=

22 10	0005 0032	026 031	30102399 30102399	Other Not Classi fied Other Not Classi fied	4911 2819	1 1	
						The current TOTAL	126,543 tons
						could possibly be	
						reduced by	67265 tons
						to a level of	59,279 tons
						if all plants met the	
						4 lb/ton NSPS	
						level	

US EPA ARCHIVE DOCUMENT